InAs–InP Superlattice Nanowires with Tunable Phonon Frequencies

V. Zannier, J. Trautvetter, A. K. Sivan, F. Rossi, D. de Matteis, B. Abad, R. Rurali, L. Sorba, I. Zardo
{"title":"InAs–InP Superlattice Nanowires with Tunable Phonon Frequencies","authors":"V. Zannier,&nbsp;J. Trautvetter,&nbsp;A. K. Sivan,&nbsp;F. Rossi,&nbsp;D. de Matteis,&nbsp;B. Abad,&nbsp;R. Rurali,&nbsp;L. Sorba,&nbsp;I. Zardo","doi":"10.1002/apxr.202300157","DOIUrl":null,"url":null,"abstract":"<p>The control of heat conduction through the manipulation of phonons in solids is of fundamental interest and can be exploited in applications for thermoelectric conversion. In this context, the advent of novel semiconductor nanomaterials with high surface-to-volume ratio, e.g. nanowires, offer exciting perspectives, leading to significant leaps forwarding the efficiency of solid-state thermoelectric converters after decades of stagnation. Beyond the high aspect ratio, the nanowire geometry offers unprecedented possibilities of materials combination and crystal phase engineering not achievable with 2D counterparts. In this work, the growth of long (up to 100 repetitions) wurtzite InAs/InP superlattice nanowires with homogeneous segment thicknesses is reported, with control down to the single digit of nanometer. By means of Raman scattering experiments, clear modifications of the phonon dispersion in superlattice nanowires are found, where both InAs-like and InP-like modes are present. The experimentally measured modes are well reproduced by density functional perturbation theory calculations. Remarkably, it is found that the phonon frequencies can be tuned by the superlattice periodicity, opening exciting perspectives for phonon engineering and thermoelectric applications.</p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"3 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202300157","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Physics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apxr.202300157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The control of heat conduction through the manipulation of phonons in solids is of fundamental interest and can be exploited in applications for thermoelectric conversion. In this context, the advent of novel semiconductor nanomaterials with high surface-to-volume ratio, e.g. nanowires, offer exciting perspectives, leading to significant leaps forwarding the efficiency of solid-state thermoelectric converters after decades of stagnation. Beyond the high aspect ratio, the nanowire geometry offers unprecedented possibilities of materials combination and crystal phase engineering not achievable with 2D counterparts. In this work, the growth of long (up to 100 repetitions) wurtzite InAs/InP superlattice nanowires with homogeneous segment thicknesses is reported, with control down to the single digit of nanometer. By means of Raman scattering experiments, clear modifications of the phonon dispersion in superlattice nanowires are found, where both InAs-like and InP-like modes are present. The experimentally measured modes are well reproduced by density functional perturbation theory calculations. Remarkably, it is found that the phonon frequencies can be tuned by the superlattice periodicity, opening exciting perspectives for phonon engineering and thermoelectric applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有可调谐声子频率的 InAs-InP 超晶格纳米线
通过操纵固体中的声子来控制热传导具有重要意义,可在热电转换应用中加以利用。在此背景下,高表面积比的新型半导体纳米材料(如纳米线)的出现提供了令人兴奋的前景,使固态热电转换器的效率在停滞数十年后实现了重大飞跃。除了高纵横比之外,纳米线的几何形状还为材料组合和晶相工程提供了前所未有的可能性,这是二维材料无法实现的。在这项工作中,报告了具有均匀段厚度的长晶簇状 InAs/InP 超晶格纳米线(最多重复 100 次)的生长情况,其控制可精确到个位数纳米。通过拉曼散射实验,发现超晶格纳米线中的声子色散发生了明显的变化,其中同时存在类 InAs 和类 InP 模式。密度泛函扰动理论计算很好地再现了实验测量到的模式。值得注意的是,研究发现声子频率可以通过超晶格周期性进行调整,这为声子工程和热电应用开辟了令人兴奋的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Topological Insulator Nanowires Made by AFM Nanopatterning: Fabrication Process and Ultra Low-Temperature Transport Properties (Adv. Phys. Res. 12/2024) Masthead (Adv. Phys. Res. 12/2024) Epithelial Folding Through Local Degradation of an Elastic Basement Membrane Plate Observation of Thermally Induced Piezomagnetic Switching in Cu2OSeO3 Polymorph Synthesized under High-Pressure (Adv. Phys. Res. 11/2024) Exploring Green Fluorescent Protein Brownian Motion: Temperature and Concentration Dependencies Through Luminescence Thermometry (Adv. Phys. Res. 11/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1