Blandine Pichon, Eric Benoit, Stéphane Perrin, Alexandre Benoit, Nicolas Berton, Dorian Coves, Julien Cruvieux, Youssouph Faye
{"title":"A low-cost machine learning process for gait measurement using an electrostatic sensors network","authors":"Blandine Pichon, Eric Benoit, Stéphane Perrin, Alexandre Benoit, Nicolas Berton, Dorian Coves, Julien Cruvieux, Youssouph Faye","doi":"10.21014/actaimeko.v13i1.1323","DOIUrl":null,"url":null,"abstract":"Continuous in-house measurement of gait of elderly People is relevant for health professionals. To be adopted by most, the system must be low-cost and non-intrusive. In this paper we present a solution for measuring the walking velocity based on a network of 4 electric potential sensors. In our experiments, we also add PIR sensors used in our previous work for comparative purposes. A temporary Depth camera is used for training the model on walking velocity. The first results presented are obtained without machine learning. Then a machine learning regression method is tested to reduce the uncertainty of the sensors. The results show that the electric potential sensors are suitable for the in-house measurement of walking speed of elderly people. The uncertainty is lower than the target of 0.15 m s-1 known as the upper limit for detecting a reduction in speed due to illness. As for the PIR sensors, electric potential sensors consume very little energy, they are inexpensive, they can be embedded and hidden in the home which makes them less -intrusive and furthermore have better accuracy.","PeriodicalId":37987,"journal":{"name":"Acta IMEKO","volume":"28 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta IMEKO","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21014/actaimeko.v13i1.1323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
Continuous in-house measurement of gait of elderly People is relevant for health professionals. To be adopted by most, the system must be low-cost and non-intrusive. In this paper we present a solution for measuring the walking velocity based on a network of 4 electric potential sensors. In our experiments, we also add PIR sensors used in our previous work for comparative purposes. A temporary Depth camera is used for training the model on walking velocity. The first results presented are obtained without machine learning. Then a machine learning regression method is tested to reduce the uncertainty of the sensors. The results show that the electric potential sensors are suitable for the in-house measurement of walking speed of elderly people. The uncertainty is lower than the target of 0.15 m s-1 known as the upper limit for detecting a reduction in speed due to illness. As for the PIR sensors, electric potential sensors consume very little energy, they are inexpensive, they can be embedded and hidden in the home which makes them less -intrusive and furthermore have better accuracy.
期刊介绍:
The main goal of this journal is the enhancement of academic activities of IMEKO and a wider dissemination of scientific output from IMEKO TC events. High-quality papers presented at IMEKO conferences, workshops or congresses are seleted by the event organizers and the authors are invited to publish an enhanced version of their paper in this journal. The journal also publishes scientific articles on measurement and instrumentation not related to an IMEKO event.