{"title":"MC-Keyboard: A Practical Phase I Trial Design for Targeted Therapies and Immunotherapies Integrating Multiple-Grade Toxicities","authors":"Liyun Jiang, Zhulin Yin, Fangrong Yan, Ying Yuan","doi":"10.36401/jipo-23-35","DOIUrl":null,"url":null,"abstract":"\n \n \n In targeted therapies and immunotherapies, the occurrence of low-grade (e.g., grade 1–2) toxicities (LGT) is common, while dose-limiting toxicities (DLT) are relatively rare. As a result, conventional phase I trial designs, solely based on DLTs and disregarding milder toxicities, are problematic when evaluating these novel therapies. Methods: To address this issue, we propose a novel phase I design called a multiple-constraint keyboard (MC-Keyboard) that integrates multiple toxicity constraints, accounting for both DLT and LGT, for precise dose escalation and de-escalation, and identification of the maximum tolerated dose (MTD). As a model-assisted design, an important feature of MC-Keyboard is that its dose-escalation or de-escalation rule can be pretabulated and incorporated into the trial protocol before the initiation of the trial, greatly simplifying its implementation. Results: The simulation study showed that the MC-Keyboard had high accuracy in identifying the MTD and is safer than some existing designs. Conclusion: The MC-Keyboard provides a novel, simple, and safe approach to assessing safety and identifying the MTD for targeted therapies and immunotherapies.\n","PeriodicalId":506669,"journal":{"name":"Journal of Immunotherapy and Precision Oncology","volume":"117 26","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Immunotherapy and Precision Oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36401/jipo-23-35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In targeted therapies and immunotherapies, the occurrence of low-grade (e.g., grade 1–2) toxicities (LGT) is common, while dose-limiting toxicities (DLT) are relatively rare. As a result, conventional phase I trial designs, solely based on DLTs and disregarding milder toxicities, are problematic when evaluating these novel therapies. Methods: To address this issue, we propose a novel phase I design called a multiple-constraint keyboard (MC-Keyboard) that integrates multiple toxicity constraints, accounting for both DLT and LGT, for precise dose escalation and de-escalation, and identification of the maximum tolerated dose (MTD). As a model-assisted design, an important feature of MC-Keyboard is that its dose-escalation or de-escalation rule can be pretabulated and incorporated into the trial protocol before the initiation of the trial, greatly simplifying its implementation. Results: The simulation study showed that the MC-Keyboard had high accuracy in identifying the MTD and is safer than some existing designs. Conclusion: The MC-Keyboard provides a novel, simple, and safe approach to assessing safety and identifying the MTD for targeted therapies and immunotherapies.