{"title":"Use of Friction Pendulum System for Seismic Isolation of Museum Artifacts: Mathematical Modeling and Parametric Study","authors":"Abdullah Çelik, C. O. Azeloğlu","doi":"10.2339/politeknik.1386758","DOIUrl":null,"url":null,"abstract":"ABSTRACT \nEarthquakes seriously threaten precious artifacts in museums worldwide. Many historical pieces of inestimable importance that are considered the common heritage of humanity have been damaged by earthquakes. Robust measures must be put in place to protect museum artifacts from the perils associated with seismic risks. Seismic isolation devices like spherically shaped bearings are one of the best options to prevent seismic damage of museum artifacts thanks to achieving a long period under low weights. Therefore, the objective of this research is to assess the effectiveness of friction pendulum-type isolators, one of the spherically shaped bearings, in seismic isolation of museum artifacts and to identify the appropriate design parameters. In this study, a non-isolated single-degree-of-freedom model and a 2-degree-of-freedom model isolated with a single friction pendulum bearing inside a building were established for a museum artifact. A parametric study was conducted using the root mean square and the maximum accelerations and displacements of the isolated mass at different values of friction coefficient and effective radius of curvature, as well as the maximum displacement of the friction pendulum system. Afterward, the non-isolated and isolated mass responses were compared in the time domain based on selected parameters obtained from the parametric study. The behavior of the isolator was analyzed, and its effectiveness was evaluated.","PeriodicalId":16884,"journal":{"name":"Journal of Polytechnic","volume":" 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polytechnic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2339/politeknik.1386758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT
Earthquakes seriously threaten precious artifacts in museums worldwide. Many historical pieces of inestimable importance that are considered the common heritage of humanity have been damaged by earthquakes. Robust measures must be put in place to protect museum artifacts from the perils associated with seismic risks. Seismic isolation devices like spherically shaped bearings are one of the best options to prevent seismic damage of museum artifacts thanks to achieving a long period under low weights. Therefore, the objective of this research is to assess the effectiveness of friction pendulum-type isolators, one of the spherically shaped bearings, in seismic isolation of museum artifacts and to identify the appropriate design parameters. In this study, a non-isolated single-degree-of-freedom model and a 2-degree-of-freedom model isolated with a single friction pendulum bearing inside a building were established for a museum artifact. A parametric study was conducted using the root mean square and the maximum accelerations and displacements of the isolated mass at different values of friction coefficient and effective radius of curvature, as well as the maximum displacement of the friction pendulum system. Afterward, the non-isolated and isolated mass responses were compared in the time domain based on selected parameters obtained from the parametric study. The behavior of the isolator was analyzed, and its effectiveness was evaluated.