Uncertainty-guided Contrastive Learning for Single Source Domain Generalisation

Anastasios Arsenos, D. Kollias, Evangelos Petrongonas, Christos Skliros, S. Kollias
{"title":"Uncertainty-guided Contrastive Learning for Single Source Domain Generalisation","authors":"Anastasios Arsenos, D. Kollias, Evangelos Petrongonas, Christos Skliros, S. Kollias","doi":"10.1109/icassp48485.2024.10448096","DOIUrl":null,"url":null,"abstract":"In the context of single domain generalisation, the objective is for models that have been exclusively trained on data from a single domain to demonstrate strong performance when confronted with various unfamiliar domains. In this paper, we introduce a novel model referred to as Contrastive Uncertainty Domain Generalisation Network (CUDGNet). The key idea is to augment the source capacity in both input and label spaces through the fictitious domain generator and jointly learn the domain invariant representation of each class through contrastive learning. Extensive experiments on two Single Source Domain Generalisation (SSDG) datasets demonstrate the effectiveness of our approach, which surpasses the state-of-the-art single-DG methods by up to $7.08\\%$. Our method also provides efficient uncertainty estimation at inference time from a single forward pass through the generator subnetwork.","PeriodicalId":513202,"journal":{"name":"ArXiv","volume":"113 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp48485.2024.10448096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the context of single domain generalisation, the objective is for models that have been exclusively trained on data from a single domain to demonstrate strong performance when confronted with various unfamiliar domains. In this paper, we introduce a novel model referred to as Contrastive Uncertainty Domain Generalisation Network (CUDGNet). The key idea is to augment the source capacity in both input and label spaces through the fictitious domain generator and jointly learn the domain invariant representation of each class through contrastive learning. Extensive experiments on two Single Source Domain Generalisation (SSDG) datasets demonstrate the effectiveness of our approach, which surpasses the state-of-the-art single-DG methods by up to $7.08\%$. Our method also provides efficient uncertainty estimation at inference time from a single forward pass through the generator subnetwork.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单源领域泛化的不确定性引导对比学习
在单领域泛化的背景下,我们的目标是让专门在单领域数据上训练过的模型在面对各种陌生领域时表现出强大的性能。在本文中,我们引入了一种新型模型,称为对比不确定域泛化网络(CUDGNet)。其主要思想是通过虚构域生成器增强输入和标签空间的源容量,并通过对比学习共同学习每个类别的域不变表示。在两个单源域泛化(SSDG)数据集上进行的广泛实验证明了我们的方法的有效性,它超越了最先进的单源域泛化方法,最高可达 7.08 美元/%$。我们的方法还能在推理时通过生成器子网络的单次前向传递提供高效的不确定性估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining Transformer based Deep Reinforcement Learning with Black-Litterman Model for Portfolio Optimization TinyGC-Net: An Extremely Tiny Network for Calibrating MEMS Gyroscopes Short-Term Solar Irradiance Forecasting Under Data Transmission Constraints F2Depth: Self-supervised Indoor Monocular Depth Estimation via Optical Flow Consistency and Feature Map Synthesis Efficient Constrained k-Center Clustering with Background Knowledge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1