Detecting Security-Relevant Methods using Multi-label Machine Learning

ArXiv Pub Date : 2024-03-12 DOI:10.1145/3643796.3648464
Oshando Johnson, Goran Piskachev, Ranjith Krishnamurthy, Eric Bodden
{"title":"Detecting Security-Relevant Methods using Multi-label Machine Learning","authors":"Oshando Johnson, Goran Piskachev, Ranjith Krishnamurthy, Eric Bodden","doi":"10.1145/3643796.3648464","DOIUrl":null,"url":null,"abstract":"To detect security vulnerabilities, static analysis tools need to be configured with security-relevant methods. Current approaches can automatically identify such methods using binary relevance machine learning approaches. However, they ignore dependencies among security-relevant methods, over-generalize and perform poorly in practice. Additionally, users have to nevertheless manually configure static analysis tools using the detected methods. Based on feedback from users and our observations, the excessive manual steps can often be tedious, error-prone and counter-intuitive. In this paper, we present Dev-Assist, an IntelliJ IDEA plugin that detects security-relevant methods using a multi-label machine learning approach that considers dependencies among labels. The plugin can automatically generate configurations for static analysis tools, run the static analysis, and show the results in IntelliJ IDEA. Our experiments reveal that Dev-Assist's machine learning approach has a higher F1-Measure than related approaches. Moreover, the plugin reduces and simplifies the manual effort required when configuring and using static analysis tools.","PeriodicalId":513202,"journal":{"name":"ArXiv","volume":"86 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3643796.3648464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To detect security vulnerabilities, static analysis tools need to be configured with security-relevant methods. Current approaches can automatically identify such methods using binary relevance machine learning approaches. However, they ignore dependencies among security-relevant methods, over-generalize and perform poorly in practice. Additionally, users have to nevertheless manually configure static analysis tools using the detected methods. Based on feedback from users and our observations, the excessive manual steps can often be tedious, error-prone and counter-intuitive. In this paper, we present Dev-Assist, an IntelliJ IDEA plugin that detects security-relevant methods using a multi-label machine learning approach that considers dependencies among labels. The plugin can automatically generate configurations for static analysis tools, run the static analysis, and show the results in IntelliJ IDEA. Our experiments reveal that Dev-Assist's machine learning approach has a higher F1-Measure than related approaches. Moreover, the plugin reduces and simplifies the manual effort required when configuring and using static analysis tools.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用多标签机器学习检测安全相关方法
要检测安全漏洞,静态分析工具需要配置与安全相关的方法。目前的方法可以使用二进制相关性机器学习方法自动识别此类方法。然而,这些方法忽略了安全相关方法之间的依赖关系,过度泛化,在实践中表现不佳。此外,用户还必须使用检测到的方法手动配置静态分析工具。根据用户的反馈和我们的观察,过多的手动步骤往往是乏味、容易出错和违背直觉的。在本文中,我们介绍了 Dev-Assist,它是一个 IntelliJ IDEA 插件,可使用多标签机器学习方法检测与安全相关的方法,并考虑标签之间的依赖关系。该插件可以自动生成静态分析工具的配置,运行静态分析,并在 IntelliJ IDEA 中显示结果。我们的实验表明,与相关方法相比,Dev-Assist 的机器学习方法具有更高的 F1-Measure。此外,该插件还减少并简化了配置和使用静态分析工具时所需的手动操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining Transformer based Deep Reinforcement Learning with Black-Litterman Model for Portfolio Optimization TinyGC-Net: An Extremely Tiny Network for Calibrating MEMS Gyroscopes Short-Term Solar Irradiance Forecasting Under Data Transmission Constraints F2Depth: Self-supervised Indoor Monocular Depth Estimation via Optical Flow Consistency and Feature Map Synthesis Efficient Constrained k-Center Clustering with Background Knowledge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1