Data Cubes in Hand: A Design Space of Tangible Cubes for Visualizing 3D Spatio-Temporal Data in Mixed Reality

ArXiv Pub Date : 2024-03-11 DOI:10.1145/3613904.3642740
Shuqi He, Haonan Yao, Luyan Jiang, Kaiwen Li, Nan Xiang, Yue Li, Hai-Ning Liang, Lingyun Yu
{"title":"Data Cubes in Hand: A Design Space of Tangible Cubes for Visualizing 3D Spatio-Temporal Data in Mixed Reality","authors":"Shuqi He, Haonan Yao, Luyan Jiang, Kaiwen Li, Nan Xiang, Yue Li, Hai-Ning Liang, Lingyun Yu","doi":"10.1145/3613904.3642740","DOIUrl":null,"url":null,"abstract":"Tangible interfaces in mixed reality (MR) environments allow for intuitive data interactions. Tangible cubes, with their rich interaction affordances, high maneuverability, and stable structure, are particularly well-suited for exploring multi-dimensional data types. However, the design potential of these cubes is underexplored. This study introduces a design space for tangible cubes in MR, focusing on interaction space, visualization space, sizes, and multiplicity. Using spatio-temporal data, we explored the interaction affordances of these cubes in a workshop (N=24). We identified unique interactions like rotating, tapping, and stacking, which are linked to augmented reality (AR) visualization commands. Integrating user-identified interactions, we created a design space for tangible-cube interactions and visualization. A prototype visualizing global health spending with small cubes was developed and evaluated, supporting both individual and combined cube manipulation. This research enhances our grasp of tangible interaction in MR, offering insights for future design and application in diverse data contexts.","PeriodicalId":513202,"journal":{"name":"ArXiv","volume":"29 37","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3613904.3642740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tangible interfaces in mixed reality (MR) environments allow for intuitive data interactions. Tangible cubes, with their rich interaction affordances, high maneuverability, and stable structure, are particularly well-suited for exploring multi-dimensional data types. However, the design potential of these cubes is underexplored. This study introduces a design space for tangible cubes in MR, focusing on interaction space, visualization space, sizes, and multiplicity. Using spatio-temporal data, we explored the interaction affordances of these cubes in a workshop (N=24). We identified unique interactions like rotating, tapping, and stacking, which are linked to augmented reality (AR) visualization commands. Integrating user-identified interactions, we created a design space for tangible-cube interactions and visualization. A prototype visualizing global health spending with small cubes was developed and evaluated, supporting both individual and combined cube manipulation. This research enhances our grasp of tangible interaction in MR, offering insights for future design and application in diverse data contexts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
手握数据立方体:在混合现实中可视化三维时空数据的有形立方体设计空间
混合现实(MR)环境中的有形界面可以实现直观的数据交互。有形立方体具有丰富的交互能力、高可操作性和稳定的结构,特别适合探索多维数据类型。然而,这些立方体的设计潜力尚未得到充分开发。本研究介绍了 MR 中有形立方体的设计空间,重点关注交互空间、可视化空间、尺寸和多重性。利用时空数据,我们在一个工作坊(24 人)中探索了这些立方体的交互能力。我们确定了独特的交互方式,如旋转、点击和堆叠,这些都与增强现实(AR)可视化命令相关联。通过整合用户识别的交互方式,我们为有形立方体的交互和可视化创建了一个设计空间。我们开发并评估了使用小立方体可视化全球卫生支出的原型,该原型支持单个和组合立方体操作。这项研究增强了我们对 MR 中有形交互的掌握,为未来在各种数据环境中的设计和应用提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining Transformer based Deep Reinforcement Learning with Black-Litterman Model for Portfolio Optimization TinyGC-Net: An Extremely Tiny Network for Calibrating MEMS Gyroscopes Short-Term Solar Irradiance Forecasting Under Data Transmission Constraints F2Depth: Self-supervised Indoor Monocular Depth Estimation via Optical Flow Consistency and Feature Map Synthesis Efficient Constrained k-Center Clustering with Background Knowledge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1