CSCNET: Class-Specified Cascaded Network for Compositional Zero-Shot Learning

Yanyi Zhang, Qi Jia, Xin Fan, Yu Liu, Ran He
{"title":"CSCNET: Class-Specified Cascaded Network for Compositional Zero-Shot Learning","authors":"Yanyi Zhang, Qi Jia, Xin Fan, Yu Liu, Ran He","doi":"10.1109/icassp48485.2024.10446756","DOIUrl":null,"url":null,"abstract":"Attribute and object (A-O) disentanglement is a fundamental and critical problem for Compositional Zero-shot Learning (CZSL), whose aim is to recognize novel A-O compositions based on foregone knowledge. Existing methods based on disentangled representation learning lose sight of the contextual dependency between the A-O primitive pairs. Inspired by this, we propose a novel A-O disentangled framework for CZSL, namely Class-specified Cascaded Network (CSCNet). The key insight is to firstly classify one primitive and then specifies the predicted class as a priori for guiding another primitive recognition in a cascaded fashion. To this end, CSCNet constructs Attribute-to-Object and Object-to-Attribute cascaded branches, in addition to a composition branch modeling the two primitives as a whole. Notably, we devise a parametric classifier (ParamCls) to improve the matching between visual and semantic embeddings. By improving the A-O disentanglement, our framework achieves superior results than previous competitive methods.","PeriodicalId":513202,"journal":{"name":"ArXiv","volume":"1 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp48485.2024.10446756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Attribute and object (A-O) disentanglement is a fundamental and critical problem for Compositional Zero-shot Learning (CZSL), whose aim is to recognize novel A-O compositions based on foregone knowledge. Existing methods based on disentangled representation learning lose sight of the contextual dependency between the A-O primitive pairs. Inspired by this, we propose a novel A-O disentangled framework for CZSL, namely Class-specified Cascaded Network (CSCNet). The key insight is to firstly classify one primitive and then specifies the predicted class as a priori for guiding another primitive recognition in a cascaded fashion. To this end, CSCNet constructs Attribute-to-Object and Object-to-Attribute cascaded branches, in addition to a composition branch modeling the two primitives as a whole. Notably, we devise a parametric classifier (ParamCls) to improve the matching between visual and semantic embeddings. By improving the A-O disentanglement, our framework achieves superior results than previous competitive methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CSCNET:用于合成零点学习的分类指定级联网络
属性与对象(A-O)分离是组合零点学习(CZSL)的一个基本而关键的问题,其目的是根据已有知识识别新的 A-O 组合。现有的基于解缠表示学习的方法忽略了 A-O 原始对之间的上下文依赖关系。受此启发,我们为 CZSL 提出了一个新颖的 A-O 分解框架,即分类指定级联网络(CSCNet)。其关键在于首先对一个基元进行分类,然后将预测的类别作为先验类别,以级联方式指导另一个基元的识别。为此,CSCNet 构建了 "属性到对象 "和 "对象到属性 "的级联分支,此外还有一个将两个基元作为整体建模的组合分支。值得注意的是,我们设计了一个参数分类器(ParamCls)来改进视觉嵌入和语义嵌入之间的匹配。通过改进 A-O 解缠,我们的框架取得了优于以往竞争方法的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining Transformer based Deep Reinforcement Learning with Black-Litterman Model for Portfolio Optimization TinyGC-Net: An Extremely Tiny Network for Calibrating MEMS Gyroscopes Short-Term Solar Irradiance Forecasting Under Data Transmission Constraints F2Depth: Self-supervised Indoor Monocular Depth Estimation via Optical Flow Consistency and Feature Map Synthesis Efficient Constrained k-Center Clustering with Background Knowledge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1