Segmentation of tumor regions using 3D-UNet in magnetic resonance imaging

Divya Mohan, Ulagamuthalvi Venugopal, Nisha Joseph, Kulanthaivel Govindarajan
{"title":"Segmentation of tumor regions using 3D-UNet in magnetic resonance imaging","authors":"Divya Mohan, Ulagamuthalvi Venugopal, Nisha Joseph, Kulanthaivel Govindarajan","doi":"10.32629/jai.v7i5.1058","DOIUrl":null,"url":null,"abstract":"Brain tumor has been a severe problem for a few decades ago. With the advancement in medical technologies, a brain tumor can be treated if observed earlier. This paper aims to segment and classify the tumor regions from Magnetic Resonance Imaging (MRI). The work consists of two steps. In step1, the 3D MRI images are pre-processed by the Salient Object Detection method to improve efficiency. In step2, the improved 3D-Res2UNet segments the tumor regions. The segmented tumors are partitioned into two classes using a Support Vector Machine (SVM) classifier. The method is tested using BRATS 2017 and 2018 datasets and obtained 87.1% and 99.2% dice score for BRATS 2017 and 2018, respectively. The performance of the proposed method is better compared to most recent methods.","PeriodicalId":508223,"journal":{"name":"Journal of Autonomous Intelligence","volume":"31 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Autonomous Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32629/jai.v7i5.1058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Brain tumor has been a severe problem for a few decades ago. With the advancement in medical technologies, a brain tumor can be treated if observed earlier. This paper aims to segment and classify the tumor regions from Magnetic Resonance Imaging (MRI). The work consists of two steps. In step1, the 3D MRI images are pre-processed by the Salient Object Detection method to improve efficiency. In step2, the improved 3D-Res2UNet segments the tumor regions. The segmented tumors are partitioned into two classes using a Support Vector Machine (SVM) classifier. The method is tested using BRATS 2017 and 2018 datasets and obtained 87.1% and 99.2% dice score for BRATS 2017 and 2018, respectively. The performance of the proposed method is better compared to most recent methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用磁共振成像中的 3D-UNet 对肿瘤区域进行分割
几十年前,脑肿瘤就是一个严重的问题。随着医疗技术的进步,如果能及早发现,脑肿瘤是可以治疗的。本文旨在通过磁共振成像(MRI)对肿瘤区域进行分割和分类。这项工作包括两个步骤。第一步,用突出物体检测方法对三维核磁共振图像进行预处理,以提高效率。第二步,改进后的 3D-Res2UNet 对肿瘤区域进行分割。使用支持向量机(SVM)分类器将分割后的肿瘤分为两类。该方法使用 BRATS 2017 和 2018 数据集进行了测试,在 BRATS 2017 和 2018 数据集上分别获得了 87.1% 和 99.2% 的骰分。与大多数最新方法相比,拟议方法的性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting people in sprinting motion using HPRDenoise: Point cloud denoising with hidden point removal Adaptive Multi-Layer Security Framework (AMLSF) for real-time applications in smart city networks Effective speech recognition for healthcare industry using phonetic system Integrating multisensory information fusion and interaction technologies in smart healthcare systems An investigation to identify the factors that cause failure in English essay, precis, and composition papers in CSS exams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1