AQuA: Automated Question-Answering in Software Tutorial Videos with Visual Anchors

ArXiv Pub Date : 2024-03-08 DOI:10.1145/3613904.3642752
Saelyne Yang, Jo Vermeulen, G. Fitzmaurice, Justin Matejka
{"title":"AQuA: Automated Question-Answering in Software Tutorial Videos with Visual Anchors","authors":"Saelyne Yang, Jo Vermeulen, G. Fitzmaurice, Justin Matejka","doi":"10.1145/3613904.3642752","DOIUrl":null,"url":null,"abstract":"Tutorial videos are a popular help source for learning feature-rich software. However, getting quick answers to questions about tutorial videos is difficult. We present an automated approach for responding to tutorial questions. By analyzing 633 questions found in 5,944 video comments, we identified different question types and observed that users frequently described parts of the video in questions. We then asked participants (N=24) to watch tutorial videos and ask questions while annotating the video with relevant visual anchors. Most visual anchors referred to UI elements and the application workspace. Based on these insights, we built AQuA, a pipeline that generates useful answers to questions with visual anchors. We demonstrate this for Fusion 360, showing that we can recognize UI elements in visual anchors and generate answers using GPT-4 augmented with that visual information and software documentation. An evaluation study (N=16) demonstrates that our approach provides better answers than baseline methods.","PeriodicalId":513202,"journal":{"name":"ArXiv","volume":"1 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3613904.3642752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tutorial videos are a popular help source for learning feature-rich software. However, getting quick answers to questions about tutorial videos is difficult. We present an automated approach for responding to tutorial questions. By analyzing 633 questions found in 5,944 video comments, we identified different question types and observed that users frequently described parts of the video in questions. We then asked participants (N=24) to watch tutorial videos and ask questions while annotating the video with relevant visual anchors. Most visual anchors referred to UI elements and the application workspace. Based on these insights, we built AQuA, a pipeline that generates useful answers to questions with visual anchors. We demonstrate this for Fusion 360, showing that we can recognize UI elements in visual anchors and generate answers using GPT-4 augmented with that visual information and software documentation. An evaluation study (N=16) demonstrates that our approach provides better answers than baseline methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AQuA:利用视觉锚点在软件教程视频中自动答题
教程视频是学习功能丰富的软件的常用帮助资源。然而,要快速回答有关教程视频的问题却很困难。我们提出了一种自动回复教程问题的方法。通过分析 5944 条视频评论中的 633 个问题,我们确定了不同的问题类型,并观察到用户经常在问题中描述视频的部分内容。然后,我们让参与者(24 人)观看教程视频并提问,同时在视频中标注相关的视觉锚点。大多数视觉锚点指的是用户界面元素和应用程序工作区。基于这些见解,我们建立了 AQuA,这是一个通过视觉锚点为问题生成有用答案的管道。我们为 Fusion 360 演示了这一功能,表明我们可以识别视觉锚点中的用户界面元素,并使用 GPT-4 生成带有视觉信息和软件文档的答案。一项评估研究(N=16)表明,与基线方法相比,我们的方法能提供更好的答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining Transformer based Deep Reinforcement Learning with Black-Litterman Model for Portfolio Optimization TinyGC-Net: An Extremely Tiny Network for Calibrating MEMS Gyroscopes Short-Term Solar Irradiance Forecasting Under Data Transmission Constraints F2Depth: Self-supervised Indoor Monocular Depth Estimation via Optical Flow Consistency and Feature Map Synthesis Efficient Constrained k-Center Clustering with Background Knowledge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1