Disentangled Diffusion-Based 3D Human Pose Estimation with Hierarchical Spatial and Temporal Denoiser

ArXiv Pub Date : 2024-03-07 DOI:10.1609/aaai.v38i2.27847
Qingyuan Cai, Xuecai Hu, Saihui Hou, Li Yao, Yongzhen Huang
{"title":"Disentangled Diffusion-Based 3D Human Pose Estimation with Hierarchical Spatial and Temporal Denoiser","authors":"Qingyuan Cai, Xuecai Hu, Saihui Hou, Li Yao, Yongzhen Huang","doi":"10.1609/aaai.v38i2.27847","DOIUrl":null,"url":null,"abstract":"Recently, diffusion-based methods for monocular 3D human pose estimation have achieved state-of-the-art (SOTA) performance by directly regressing the 3D joint coordinates from the 2D pose sequence. Although some methods decompose the task into bone length and bone direction prediction based on the human anatomical skeleton to explicitly incorporate more human body prior constraints, the performance of these methods is significantly lower than that of the SOTA diffusion-based methods. This can be attributed to the tree structure of the human skeleton. Direct application of the disentangled method could amplify the accumulation of hierarchical errors, propagating through each hierarchy. Meanwhile, the hierarchical information has not been fully explored by the previous methods. To address these problems, a Disentangled Diffusion-based 3D human Pose Estimation method with Hierarchical Spatial and Temporal Denoiser is proposed, termed DDHPose. In our approach: (1) We disentangle the 3d pose and diffuse the bone length and bone direction during the forward process of the diffusion model to effectively model the human pose prior. A disentanglement loss is proposed to supervise diffusion model learning. (2) For the reverse process, we propose Hierarchical Spatial and Temporal Denoiser (HSTDenoiser) to improve the hierarchical modelling of each joint. Our HSTDenoiser comprises two components: the Hierarchical-Related Spatial Transformer (HRST) and the Hierarchical-Related Temporal Transformer (HRTT). HRST exploits joint spatial information and the influence of the parent joint on each joint for spatial modeling, while HRTT utilizes information from both the joint and its hierarchical adjacent joints to explore the hierarchical temporal correlations among joints. Extensive experiments on the Human3.6M and MPI-INF-3DHP datasets show that our method outperforms the SOTA disentangled-based, non-disentangled based, and probabilistic approaches by 10.0%, 2.0%, and 1.3%, respectively.","PeriodicalId":513202,"journal":{"name":"ArXiv","volume":"18 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaai.v38i2.27847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, diffusion-based methods for monocular 3D human pose estimation have achieved state-of-the-art (SOTA) performance by directly regressing the 3D joint coordinates from the 2D pose sequence. Although some methods decompose the task into bone length and bone direction prediction based on the human anatomical skeleton to explicitly incorporate more human body prior constraints, the performance of these methods is significantly lower than that of the SOTA diffusion-based methods. This can be attributed to the tree structure of the human skeleton. Direct application of the disentangled method could amplify the accumulation of hierarchical errors, propagating through each hierarchy. Meanwhile, the hierarchical information has not been fully explored by the previous methods. To address these problems, a Disentangled Diffusion-based 3D human Pose Estimation method with Hierarchical Spatial and Temporal Denoiser is proposed, termed DDHPose. In our approach: (1) We disentangle the 3d pose and diffuse the bone length and bone direction during the forward process of the diffusion model to effectively model the human pose prior. A disentanglement loss is proposed to supervise diffusion model learning. (2) For the reverse process, we propose Hierarchical Spatial and Temporal Denoiser (HSTDenoiser) to improve the hierarchical modelling of each joint. Our HSTDenoiser comprises two components: the Hierarchical-Related Spatial Transformer (HRST) and the Hierarchical-Related Temporal Transformer (HRTT). HRST exploits joint spatial information and the influence of the parent joint on each joint for spatial modeling, while HRTT utilizes information from both the joint and its hierarchical adjacent joints to explore the hierarchical temporal correlations among joints. Extensive experiments on the Human3.6M and MPI-INF-3DHP datasets show that our method outperforms the SOTA disentangled-based, non-disentangled based, and probabilistic approaches by 10.0%, 2.0%, and 1.3%, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于弥散的三维人体姿态估计与层次空间和时间去噪器
最近,基于扩散的单目三维人体姿态估计方法通过直接回归二维姿态序列的三维关节坐标,实现了最先进的(SOTA)性能。虽然有些方法根据人体解剖骨架将任务分解为骨骼长度和骨骼方向预测,以明确纳入更多人体先验约束条件,但这些方法的性能明显低于基于 SOTA 扩散的方法。这可归因于人体骨骼的树状结构。直接应用分解方法可能会放大分层误差的积累,并通过每个层次传播。同时,以往的方法并没有充分挖掘层次信息。为了解决这些问题,我们提出了一种带有分层空间和时间去噪器的基于扩散的三维人体姿态估计方法,称为 DDHPose。在我们的方法中:(1) 在扩散模型的前向过程中,我们将三维姿势与骨骼长度和骨骼方向分离开来,从而有效地建立人体姿势先验模型。我们提出了一种不纠缠损失来监督扩散模型的学习。(2) 在反向过程中,我们提出了分层空间和时间去噪器(HSTDenoiser)来改进每个关节的分层建模。我们的 HSTDenoiser 由两部分组成:层次相关空间变换器(HRST)和层次相关时间变换器(HRTT)。HRST 利用关节空间信息和父关节对每个关节的影响来建立空间模型,而 HRTT 则利用关节及其分层相邻关节的信息来探索关节之间的分层时间相关性。在 Human3.6M 和 MPI-INF-3DHP 数据集上进行的大量实验表明,我们的方法比基于 SOTA 的非纠缠方法、基于非纠缠方法和概率方法分别优胜 10.0%、2.0% 和 1.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining Transformer based Deep Reinforcement Learning with Black-Litterman Model for Portfolio Optimization TinyGC-Net: An Extremely Tiny Network for Calibrating MEMS Gyroscopes Short-Term Solar Irradiance Forecasting Under Data Transmission Constraints F2Depth: Self-supervised Indoor Monocular Depth Estimation via Optical Flow Consistency and Feature Map Synthesis Efficient Constrained k-Center Clustering with Background Knowledge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1