Memoro: Using Large Language Models to Realize a Concise Interface for Real-Time Memory Augmentation

ArXiv Pub Date : 2024-03-04 DOI:10.1145/3613904.3642450
Wazeer Zulfikar, Samantha Chan, Pattie Maes
{"title":"Memoro: Using Large Language Models to Realize a Concise Interface for Real-Time Memory Augmentation","authors":"Wazeer Zulfikar, Samantha Chan, Pattie Maes","doi":"10.1145/3613904.3642450","DOIUrl":null,"url":null,"abstract":"People have to remember an ever-expanding volume of information. Wearables that use information capture and retrieval for memory augmentation can help but can be disruptive and cumbersome in real-world tasks, such as in social settings. To address this, we developed Memoro, a wearable audio-based memory assistant with a concise user interface. Memoro uses a large language model (LLM) to infer the user's memory needs in a conversational context, semantically search memories, and present minimal suggestions. The assistant has two interaction modes: Query Mode for voicing queries and Queryless Mode for on-demand predictive assistance, without explicit query. Our study of (N=20) participants engaged in a real-time conversation demonstrated that using Memoro reduced device interaction time and increased recall confidence while preserving conversational quality. We report quantitative results and discuss the preferences and experiences of users. This work contributes towards utilizing LLMs to design wearable memory augmentation systems that are minimally disruptive.","PeriodicalId":513202,"journal":{"name":"ArXiv","volume":"110 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3613904.3642450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

People have to remember an ever-expanding volume of information. Wearables that use information capture and retrieval for memory augmentation can help but can be disruptive and cumbersome in real-world tasks, such as in social settings. To address this, we developed Memoro, a wearable audio-based memory assistant with a concise user interface. Memoro uses a large language model (LLM) to infer the user's memory needs in a conversational context, semantically search memories, and present minimal suggestions. The assistant has two interaction modes: Query Mode for voicing queries and Queryless Mode for on-demand predictive assistance, without explicit query. Our study of (N=20) participants engaged in a real-time conversation demonstrated that using Memoro reduced device interaction time and increased recall confidence while preserving conversational quality. We report quantitative results and discuss the preferences and experiences of users. This work contributes towards utilizing LLMs to design wearable memory augmentation systems that are minimally disruptive.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Memoro:使用大型语言模型实现实时内存增强的简洁界面
人们需要记住越来越多的信息。利用信息捕捉和检索来增强记忆的可穿戴设备可以起到帮助作用,但在实际任务中(如社交场合)可能会造成干扰和麻烦。为了解决这个问题,我们开发了一款基于音频的可穿戴记忆助手 Memoro,它拥有简洁的用户界面。Memoro 使用大语言模型(LLM)来推断用户在对话语境中的记忆需求,对记忆进行语义搜索,并提出最简单的建议。该助手有两种交互模式:查询模式用于语音查询,无查询模式用于按需提供预测性帮助,无需明确查询。我们对参与实时对话的参与者(20 人)进行的研究表明,使用 Memoro 可以减少设备交互时间,提高回忆信心,同时保持对话质量。我们报告了定量结果,并讨论了用户的偏好和体验。这项工作有助于利用 LLM 设计干扰最小的可穿戴式记忆增强系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining Transformer based Deep Reinforcement Learning with Black-Litterman Model for Portfolio Optimization TinyGC-Net: An Extremely Tiny Network for Calibrating MEMS Gyroscopes Short-Term Solar Irradiance Forecasting Under Data Transmission Constraints F2Depth: Self-supervised Indoor Monocular Depth Estimation via Optical Flow Consistency and Feature Map Synthesis Efficient Constrained k-Center Clustering with Background Knowledge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1