Students’ Sentiment Analysis Using Natural Language Toolkit in Machine Learning for Module Evaluation

Carine Umunyana, Gerard Tuyizere, Anaclet Mbarushimana
{"title":"Students’ Sentiment Analysis Using Natural Language Toolkit in Machine Learning for Module Evaluation","authors":"Carine Umunyana, Gerard Tuyizere, Anaclet Mbarushimana","doi":"10.24018/ejeng.2024.9.1.3006","DOIUrl":null,"url":null,"abstract":"\n\n\n\nThis paper presents a combination of natural language toolkit (NLTK) in machine learning for sentiment analysis used for module evaluation. The module evaluation is typically done at the end of each module. Dataset of 300 students evaluating each module is conducted with excellent, very good, good, fair, and poor sentiments, delivers valuable perceptions into the overall teaching and lecturing quality and decision making for enlightening methodology of teaching and approaches. This paper demonstrates sentiment analysis model trained using logistic regression algorithm in Machine Learning to evaluate the sentiments given by students in their module evaluation. A study comparison has been done between the proposed model and other sentiment analysis for module evaluation. The results of experiments have been analyzed for decision-making.\n\n\n\n","PeriodicalId":12001,"journal":{"name":"European Journal of Engineering and Technology Research","volume":"6 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Engineering and Technology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24018/ejeng.2024.9.1.3006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a combination of natural language toolkit (NLTK) in machine learning for sentiment analysis used for module evaluation. The module evaluation is typically done at the end of each module. Dataset of 300 students evaluating each module is conducted with excellent, very good, good, fair, and poor sentiments, delivers valuable perceptions into the overall teaching and lecturing quality and decision making for enlightening methodology of teaching and approaches. This paper demonstrates sentiment analysis model trained using logistic regression algorithm in Machine Learning to evaluate the sentiments given by students in their module evaluation. A study comparison has been done between the proposed model and other sentiment analysis for module evaluation. The results of experiments have been analyzed for decision-making.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习中的自然语言工具包进行学生情感分析,促进模块评价
本文介绍了自然语言工具包(NLTK)与情感分析机器学习的结合,用于模块评估。模块评价通常在每个模块结束时进行。由 300 名学生组成的数据集对每个模块进行了优秀、很好、好、一般和差的情感评价,为整体教学和授课质量提供了有价值的感知,并为启迪教学方法和手段做出了决策。本文展示了使用机器学习中的逻辑回归算法训练的情感分析模型,以评估学生在模块评价中给出的情感。本文对所提出的模型和其他用于模块评价的情感分析模型进行了研究比较。对实验结果进行了分析,以便做出决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transitioning from “Grey to Green”: Nature-Based Solution Seawall for Coastal Protection Effectiveness of Suspended Lead Dampers in Steel Building Structural Model Subjected to Impact Load Effective Use of Catastrophe Multicriteria Decision Analysis in Delineating Groundwater Recharge Potential Zones Design of an Energy Efficient Buck Based LED Driver in DCM and CCM Visualization of Chladni Patterns at Low-Frequency Resonant and Non-Resonant Flexural Modes of Vibration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1