Enhancing disaster management effectiveness: An integrated analysis of key factors and practical strategies through Structural Equation Modeling (SEM) and scopus data text mining

Samuel Mores Geddam, C.A. Raj Kiran
{"title":"Enhancing disaster management effectiveness: An integrated analysis of key factors and practical strategies through Structural Equation Modeling (SEM) and scopus data text mining","authors":"Samuel Mores Geddam,&nbsp;C.A. Raj Kiran","doi":"10.1016/j.ghm.2024.03.001","DOIUrl":null,"url":null,"abstract":"<div><p>In the 21st century, the surge in natural and human-induced disasters necessitates robust disaster management frameworks. This research addresses a critical gap, exploring dynamics in the successful implementation and performance monitoring of disaster management. Focusing on eleven key elements like Vulnerability and Risk Assessment, Training, Disaster Preparedness, Communication, and Community Resilience, the study utilizes Scopus Database for secondary data, employing Text Mining and MS-Excel for analysis and data management. IBM SPSS (26) and IBM AMOS (20) facilitate Exploratory Factor Analysis (EFA) and Structural Equation Modeling (SEM) for model evaluation.</p><p>The research raises questions about crafting a comprehensive, adaptable model, understanding the interplay between vulnerability assessment, training, and disaster preparedness, and integrating effective communication and collaboration. Findings offer actionable insights for policy, practice, and community resilience against disasters. By scrutinizing each factor's role and interactions, the research lays the groundwork for a flexible model. Ultimately, the study aspires to cultivate more resilient communities amid the escalating threats of an unpredictable world, fostering effective navigation and thriving.</p></div>","PeriodicalId":100580,"journal":{"name":"Geohazard Mechanics","volume":"2 2","pages":"Pages 95-107"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949741824000062/pdfft?md5=913398dcf535a4bdf8df019082e034b4&pid=1-s2.0-S2949741824000062-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geohazard Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949741824000062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the 21st century, the surge in natural and human-induced disasters necessitates robust disaster management frameworks. This research addresses a critical gap, exploring dynamics in the successful implementation and performance monitoring of disaster management. Focusing on eleven key elements like Vulnerability and Risk Assessment, Training, Disaster Preparedness, Communication, and Community Resilience, the study utilizes Scopus Database for secondary data, employing Text Mining and MS-Excel for analysis and data management. IBM SPSS (26) and IBM AMOS (20) facilitate Exploratory Factor Analysis (EFA) and Structural Equation Modeling (SEM) for model evaluation.

The research raises questions about crafting a comprehensive, adaptable model, understanding the interplay between vulnerability assessment, training, and disaster preparedness, and integrating effective communication and collaboration. Findings offer actionable insights for policy, practice, and community resilience against disasters. By scrutinizing each factor's role and interactions, the research lays the groundwork for a flexible model. Ultimately, the study aspires to cultivate more resilient communities amid the escalating threats of an unpredictable world, fostering effective navigation and thriving.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提高灾害管理的有效性:通过结构方程模型(SEM)和 Scopus 数据文本挖掘综合分析关键因素和实用策略
在 21 世纪,自然灾害和人为灾害的激增要求建立强有力的灾害管理框架。本研究填补了这一重要空白,探讨了成功实施灾害管理和绩效监测的动态因素。本研究侧重于十一个关键要素,如脆弱性和风险评估、培训、备灾、沟通和社区复原力,利用 Scopus 数据库获取二手数据,并采用文本挖掘和 MS-Excel 进行分析和数据管理。IBM SPSS (26) 和 IBM AMOS (20) 为模型评估提供了探索性因子分析 (EFA) 和结构方程建模 (SEM) 的便利。这项研究提出了有关以下方面的问题:制作一个全面的、适应性强的模型;了解脆弱性评估、培训和备灾之间的相互作用;以及整合有效的沟通与协作。研究结果为政策、实践和社区抗灾能力提供了可行的见解。通过仔细研究每个因素的作用和相互作用,该研究为建立灵活的模式奠定了基础。最终,这项研究希望在不可预知的世界中,在不断升级的威胁中培养更具复原力的社区,促进有效导航和繁荣发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial Board Optimization design method of 2D+3D slope shape for landslide prevention in open-pit coal mine Stability prediction of roadway surrounding rock using INGO-RF Leveraging artificial neural networks for robust landslide susceptibility mapping: A geospatial modeling approach in the ecologically sensitive Nilgiri District, Tamil Nadu Prediction of coal and gas outburst hazard using kernel principal component analysis and an enhanced extreme learning machine approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1