From common biomass materials to high-performance tissue engineering scaffold: Biomimetic preparation, properties characterization, in vitro and in vivo evaluations

IF 20.2 Q1 MATERIALS SCIENCE, PAPER & WOOD Journal of Bioresources and Bioproducts Pub Date : 2024-03-26 DOI:10.1016/j.jobab.2024.03.004
Zongpu Xu , Fang He , Jing Yu , Zhangze Yang , Yu Zhu , Rong Liao , Ruyin Lyu , Mei Yang , Liangjun Zhu , Mingying Yang
{"title":"From common biomass materials to high-performance tissue engineering scaffold: Biomimetic preparation, properties characterization, in vitro and in vivo evaluations","authors":"Zongpu Xu ,&nbsp;Fang He ,&nbsp;Jing Yu ,&nbsp;Zhangze Yang ,&nbsp;Yu Zhu ,&nbsp;Rong Liao ,&nbsp;Ruyin Lyu ,&nbsp;Mei Yang ,&nbsp;Liangjun Zhu ,&nbsp;Mingying Yang","doi":"10.1016/j.jobab.2024.03.004","DOIUrl":null,"url":null,"abstract":"<div><p>Converting common biomass materials to high-performance biomedical products could not only reduce the environmental pressure associated with the large-scale use of synthetic materials, but also increase the economic value. Chitosan as a very promising candidate has drawn considerable attention owing to its abundant sources and remarkable bioactivities. However, pure chitosan materials usually exhibit insufficient mechanical properties and excessive swelling ratio, which seriously affected their <em>in vivo</em> stability and integrity when applied as tissue engineering scaffolds. Thus, simultaneously improving the mechanical strength and biological compatibility of pure chitosan (CS) scaffolds becomes very important. Here, inspired by the fiber-reinforced construction of natural extracellular matrix and the porous structure of cancellous bone, we built silk microfibers/chitosan composite scaffolds via ice-templating technique. This biomimetic strategy achieved 500% of mechanical improvement to pure chitosan, and meanwhile still maintaining high porosity (&gt; 87%). In addition, the increased roughness of chitosan pore walls by embedded silk microfibers significantly promoted cell adhesion and proliferation. More importantly, after subcutaneous implantation in mice for four weeks, the composite scaffold showed greater structural integrity, as well as better collagenation, angiogenesis, and osteogenesis abilities, suggesting its great potential in biomedicine.</p></div>","PeriodicalId":52344,"journal":{"name":"Journal of Bioresources and Bioproducts","volume":"9 2","pages":"Pages 185-196"},"PeriodicalIF":20.2000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2369969824000215/pdfft?md5=84c7eb03e95ed21e38e160537b3f4bc5&pid=1-s2.0-S2369969824000215-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioresources and Bioproducts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2369969824000215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0

Abstract

Converting common biomass materials to high-performance biomedical products could not only reduce the environmental pressure associated with the large-scale use of synthetic materials, but also increase the economic value. Chitosan as a very promising candidate has drawn considerable attention owing to its abundant sources and remarkable bioactivities. However, pure chitosan materials usually exhibit insufficient mechanical properties and excessive swelling ratio, which seriously affected their in vivo stability and integrity when applied as tissue engineering scaffolds. Thus, simultaneously improving the mechanical strength and biological compatibility of pure chitosan (CS) scaffolds becomes very important. Here, inspired by the fiber-reinforced construction of natural extracellular matrix and the porous structure of cancellous bone, we built silk microfibers/chitosan composite scaffolds via ice-templating technique. This biomimetic strategy achieved 500% of mechanical improvement to pure chitosan, and meanwhile still maintaining high porosity (> 87%). In addition, the increased roughness of chitosan pore walls by embedded silk microfibers significantly promoted cell adhesion and proliferation. More importantly, after subcutaneous implantation in mice for four weeks, the composite scaffold showed greater structural integrity, as well as better collagenation, angiogenesis, and osteogenesis abilities, suggesting its great potential in biomedicine.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从普通生物质材料到高性能组织工程支架:仿生制备、性能表征、体外和体内评估
将普通生物质材料转化为高性能生物医药产品,不仅可以减轻大规模使用合成材料带来的环境压力,还能提高经济价值。壳聚糖作为一种非常有前景的候选材料,因其丰富的来源和显著的生物活性而备受关注。然而,纯壳聚糖材料通常表现出机械性能不足和过高的膨胀率,这严重影响了其作为组织工程支架应用时的体内稳定性和完整性。因此,同时提高纯壳聚糖(CS)支架的机械强度和生物相容性变得非常重要。在此,我们从天然细胞外基质的纤维增强结构和松质骨的多孔结构中汲取灵感,通过冰模板技术构建了蚕丝微纤维/壳聚糖复合支架。与纯壳聚糖相比,这种仿生策略的机械性能提高了 500%,同时仍保持了较高的孔隙率(87%)。此外,通过嵌入蚕丝微纤维增加壳聚糖孔壁的粗糙度,可显著促进细胞粘附和增殖。更重要的是,复合支架在小鼠皮下植入四周后,显示出更高的结构完整性,以及更好的胶原蛋白生成、血管生成和成骨能力,表明其在生物医学方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Bioresources and Bioproducts
Journal of Bioresources and Bioproducts Agricultural and Biological Sciences-Forestry
CiteScore
39.30
自引率
0.00%
发文量
38
审稿时长
12 weeks
期刊最新文献
Editorial Board Enhanced biomass densification pretreatment using binary chemicals for efficient lignocellulosic valorization Development of Methylene Bis-Benzotriazolyl Tetramethylbutylphenol-grafted lignin sub-microspheres loaded with TiO2 for sunscreen applications Cavitation as a zero-waste circular economy process to convert citrus processing waste into biopolymers in high demand Selective biomass conversion over novel designed tandem catalyst
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1