Enhancing compatibility and biodegradability of polylactic acid/biomass composites through torrefaction of forest residue

IF 20.2 Q1 MATERIALS SCIENCE, PAPER & WOOD Journal of Bioresources and Bioproducts Pub Date : 2025-02-01 DOI:10.1016/j.jobab.2024.10.003
June-Ho Choi , Myeong Rok Ahn , Chae-Hwi Yoon , Yeon-Su Lim , Jong Ryeol Kim , Hyolin Seong , Chan-Duck Jung , Sang-Mook You , Jonghwa Kim , Younghoon Kim , Hyun Gil Cha , Jae-Won Lee , Hoyong Kim
{"title":"Enhancing compatibility and biodegradability of polylactic acid/biomass composites through torrefaction of forest residue","authors":"June-Ho Choi ,&nbsp;Myeong Rok Ahn ,&nbsp;Chae-Hwi Yoon ,&nbsp;Yeon-Su Lim ,&nbsp;Jong Ryeol Kim ,&nbsp;Hyolin Seong ,&nbsp;Chan-Duck Jung ,&nbsp;Sang-Mook You ,&nbsp;Jonghwa Kim ,&nbsp;Younghoon Kim ,&nbsp;Hyun Gil Cha ,&nbsp;Jae-Won Lee ,&nbsp;Hoyong Kim","doi":"10.1016/j.jobab.2024.10.003","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigated the effects of torrefaction on forest residue (FR) and its subsequent application as a bulk-loading filler in polylactic acid (PLA) composites. Torrefaction enhanced the chemical properties of FR, improving its compatibility with PLA, and the crystallinity increased from 24.9% to 42.5%. The process also improved the hydrophobicity of PLA/biomass composites, as demonstrated by the water contact angle of 76.1°, closely matching that of neat PLA (76.4°). With the introduction of 20% modified biomass properties after torrefaction treatment, the tensile strength of PLA/biomass composite increased from 58.7 to 62.3 MPa. Additionally, the addition of torrefied forest residue (TFR) accelerated biodegradation by increasing the onset of degradation and inhibiting crystallization. After 90 d, the biodegradability of PLA/biomass composites reached 94.9%, which had a 6.9% increase compared to the neat PLA (88.8%). Overall, this study highlights the potential of torrefaction in enhancing both the physical properties and biodegradability of PLA-based composites, contributing to a more sustainable approach to reducing plastic pollution.</div></div>","PeriodicalId":52344,"journal":{"name":"Journal of Bioresources and Bioproducts","volume":"10 1","pages":"Pages 51-61"},"PeriodicalIF":20.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioresources and Bioproducts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2369969824000744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated the effects of torrefaction on forest residue (FR) and its subsequent application as a bulk-loading filler in polylactic acid (PLA) composites. Torrefaction enhanced the chemical properties of FR, improving its compatibility with PLA, and the crystallinity increased from 24.9% to 42.5%. The process also improved the hydrophobicity of PLA/biomass composites, as demonstrated by the water contact angle of 76.1°, closely matching that of neat PLA (76.4°). With the introduction of 20% modified biomass properties after torrefaction treatment, the tensile strength of PLA/biomass composite increased from 58.7 to 62.3 MPa. Additionally, the addition of torrefied forest residue (TFR) accelerated biodegradation by increasing the onset of degradation and inhibiting crystallization. After 90 d, the biodegradability of PLA/biomass composites reached 94.9%, which had a 6.9% increase compared to the neat PLA (88.8%). Overall, this study highlights the potential of torrefaction in enhancing both the physical properties and biodegradability of PLA-based composites, contributing to a more sustainable approach to reducing plastic pollution.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Bioresources and Bioproducts
Journal of Bioresources and Bioproducts Agricultural and Biological Sciences-Forestry
CiteScore
39.30
自引率
0.00%
发文量
38
审稿时长
12 weeks
期刊最新文献
Editorial Board A lignin-based controlled/sustained release hydrogel by integrating mechanical strengthening and bioactivities of lignin Global evolution of research on autohydrolysis (hydrothermal) pretreatment as a green technology for biorefineries: A bibliometric analysis Remediation and resource utilization of Cr(Ⅲ), Al(Ⅲ) and Zr(Ⅳ)-containing tannery effluent based on chitosan-carboxymethyl cellulose aerogel Enhancing compatibility and biodegradability of polylactic acid/biomass composites through torrefaction of forest residue
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1