Estimating ionic conductivity of ionic liquids: Nernst–Einstein and Einstein formalisms

Ashutosh Kumar Verma, Amey S. Thorat, Jindal K. Shah
{"title":"Estimating ionic conductivity of ionic liquids: Nernst–Einstein and Einstein formalisms","authors":"Ashutosh Kumar Verma,&nbsp;Amey S. Thorat,&nbsp;Jindal K. Shah","doi":"10.1016/j.jil.2024.100089","DOIUrl":null,"url":null,"abstract":"<div><p>Ionic conductivity plays an important role towards the application of ionic liquids as electrolytes in next-generation batteries and electrochemical processes and is often estimated using the Nernst–Einstein formalism in molecular simulation-based studies. The Nernst–Einstein formalism is useful for dilute systems where ions do not interact with each other, restricting its applicability to dilute solutions. However, this approximation fails in concentrated solutions where ion interactions become significant, which is usually encountered for pure ionic liquids. These ion-ion correlations can dramatically affect ionic conductivity predictions in comparison to that computed under the Nernst–Einstein formalism. This study highlights the challenges associated with calculating ionic conductivity using Einstein formalism and subsequently provides a workflow for such calculations. It has been found that a minimum trajectory length of 60 ns is required to achieve converged results for Einstein ionic conductivity. Guidance is also given to reduce the computational resource requirements for Einstein conductivity determination. This simplification will enable researchers to estimate Einstein conductivity in ionic liquids more efficiently.</p></div>","PeriodicalId":100794,"journal":{"name":"Journal of Ionic Liquids","volume":"4 1","pages":"Article 100089"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772422024000120/pdfft?md5=04feae738c3957390cbc272acfa277ef&pid=1-s2.0-S2772422024000120-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ionic Liquids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772422024000120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ionic conductivity plays an important role towards the application of ionic liquids as electrolytes in next-generation batteries and electrochemical processes and is often estimated using the Nernst–Einstein formalism in molecular simulation-based studies. The Nernst–Einstein formalism is useful for dilute systems where ions do not interact with each other, restricting its applicability to dilute solutions. However, this approximation fails in concentrated solutions where ion interactions become significant, which is usually encountered for pure ionic liquids. These ion-ion correlations can dramatically affect ionic conductivity predictions in comparison to that computed under the Nernst–Einstein formalism. This study highlights the challenges associated with calculating ionic conductivity using Einstein formalism and subsequently provides a workflow for such calculations. It has been found that a minimum trajectory length of 60 ns is required to achieve converged results for Einstein ionic conductivity. Guidance is also given to reduce the computational resource requirements for Einstein conductivity determination. This simplification will enable researchers to estimate Einstein conductivity in ionic liquids more efficiently.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
估算离子液体的离子电导率:内斯特-爱因斯坦和爱因斯坦形式主义
离子电导率在离子液体作为电解质应用于下一代电池和电化学过程中发挥着重要作用,在基于分子模拟的研究中,通常使用奈恩斯特-爱因斯坦形式主义来估算离子电导率。奈恩斯特-爱因斯坦形式主义适用于离子不会相互影响的稀释体系,因此其适用范围仅限于稀释溶液。然而,在离子相互作用变得显著的浓缩溶液中,这种近似方法就失效了,而这通常是在纯离子液体中遇到的情况。与根据奈恩斯特-爱因斯坦形式主义计算的结果相比,这些离子-离子相关性会极大地影响离子电导率的预测。本研究强调了使用爱因斯坦形式主义计算离子电导率所面临的挑战,并随后提供了此类计算的工作流程。研究发现,要获得收敛的爱因斯坦离子电导率结果,轨迹长度至少需要 60 ns。此外,还给出了减少确定爱因斯坦电导率所需的计算资源的指导。这一简化将使研究人员能够更有效地估算离子液体中的爱因斯坦电导率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
期刊最新文献
Phase equilibrium and kinetic studies of choline chloride-based deep eutectic solvents in water system for the inhibition of methane gas hydrate formation Enhancing water circularity: Lactic acid-menthol deep eutectic solvent for efficient fats, oils and grease (FOG) removal and recovery from contaminated waters Designing dicationic organic salts and ionic liquids exhibiting high fluorescence in the solid state Effect of modifiers on the stability of 1‑butyl‑3-methylimidazolium-based ionic liquids Surface-induced nano-generator utilizing a thermo-responsive smart window based on ionic liquid aqueous solution that exhibits lower critical solution temperature type phase separation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1