Melting and solidification dynamics during laser melting of reaction-based metal matrix composites uncovered by in-situ synchrotron X-ray diffraction

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Acta Materialia Pub Date : 2024-03-30 DOI:10.1016/j.actamat.2024.119875
Minglei Qu , Jiandong Yuan , Ali Nabaa , Junye Huang , Chihpin Andrew Chuang , Lianyi Chen
{"title":"Melting and solidification dynamics during laser melting of reaction-based metal matrix composites uncovered by in-situ synchrotron X-ray diffraction","authors":"Minglei Qu ,&nbsp;Jiandong Yuan ,&nbsp;Ali Nabaa ,&nbsp;Junye Huang ,&nbsp;Chihpin Andrew Chuang ,&nbsp;Lianyi Chen","doi":"10.1016/j.actamat.2024.119875","DOIUrl":null,"url":null,"abstract":"<div><p>Laser additive manufacturing (AM) of reaction-based metal matrix composites (MMCs) involves highly complex and non-equilibrium material transformation behavior, including melting, dissolution, precipitation, and solidification. Yet, the dynamics and interplay of these phase transformation processes remain poorly understood, posing substantial challenges in identifying the microstructure formation mechanism, and predicting and controlling the microstructure in the printed parts. Here we performed the in-situ X-ray diffraction experiment to characterize the phase evolution dynamics of the 316L + 10 vol.%TiC system during laser melting, which provides direct and quantitative insights of the complex phase reaction and evolution dynamics under rapid heating and cooling conditions relevant to additive manufacturing of reaction-based MMCs. Further in-depth thermodynamic and kinetic calculations revealed that most of the phase evolution behavior observed in the in-situ X-ray diffraction experiment cannot be solely explained by widely used equilibrium thermodynamic models, and diffusion-controlled nonequilibrium dissolution and precipitation kinetics must be considered to elucidate the complex phase evolution behavior, including incomplete TiC dissolution, and three-step TiC precipitation. The three distinct types of precipitates generate unique hierarchical TiC micro- and nanostructures, which enhances the yield strength from 513 MPa to 877 MPa by 71 %, tensile strength from 628 MPa to 1054 MPa by 68 %, and Young's modulus from 193 GPa to 221 GPa by 14 %. The findings of our research provide the knowledge foundation for the design of unique microstructures and advanced MMC materials through laser AM.</p></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"271 ","pages":"Article 119875"},"PeriodicalIF":8.3000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645424002283","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Laser additive manufacturing (AM) of reaction-based metal matrix composites (MMCs) involves highly complex and non-equilibrium material transformation behavior, including melting, dissolution, precipitation, and solidification. Yet, the dynamics and interplay of these phase transformation processes remain poorly understood, posing substantial challenges in identifying the microstructure formation mechanism, and predicting and controlling the microstructure in the printed parts. Here we performed the in-situ X-ray diffraction experiment to characterize the phase evolution dynamics of the 316L + 10 vol.%TiC system during laser melting, which provides direct and quantitative insights of the complex phase reaction and evolution dynamics under rapid heating and cooling conditions relevant to additive manufacturing of reaction-based MMCs. Further in-depth thermodynamic and kinetic calculations revealed that most of the phase evolution behavior observed in the in-situ X-ray diffraction experiment cannot be solely explained by widely used equilibrium thermodynamic models, and diffusion-controlled nonequilibrium dissolution and precipitation kinetics must be considered to elucidate the complex phase evolution behavior, including incomplete TiC dissolution, and three-step TiC precipitation. The three distinct types of precipitates generate unique hierarchical TiC micro- and nanostructures, which enhances the yield strength from 513 MPa to 877 MPa by 71 %, tensile strength from 628 MPa to 1054 MPa by 68 %, and Young's modulus from 193 GPa to 221 GPa by 14 %. The findings of our research provide the knowledge foundation for the design of unique microstructures and advanced MMC materials through laser AM.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原位同步辐射 X 射线衍射揭示反应型金属基复合材料激光熔化过程中的熔化和凝固动态
反应型金属基复合材料(MMC)的激光增材制造(AM)涉及高度复杂的非平衡材料转化行为,包括熔化、溶解、沉淀和凝固。然而,人们对这些相变过程的动态和相互作用仍然知之甚少,这给确定微观结构形成机制、预测和控制打印部件的微观结构带来了巨大挑战。在此,我们进行了原位 X 射线衍射实验,以表征 316L + 10 vol.%TiC 体系在激光熔化过程中的相演化动态,从而为快速加热和冷却条件下的复杂相反应和演化动态提供了直接和定量的见解,这与基于反应的 MMC 增材制造相关。进一步深入的热力学和动力学计算表明,原位 X 射线衍射实验中观察到的大部分相演化行为不能完全用广泛使用的平衡热力学模型来解释,必须考虑扩散控制的非平衡溶解和沉淀动力学,以阐明复杂的相演化行为,包括不完全 TiC 溶解和三步 TiC 沉淀。三种不同类型的沉淀生成了独特的分层 TiC 微结构和纳米结构,使屈服强度从 513 兆帕提高到 877 兆帕,提高了 71%;抗拉强度从 628 兆帕提高到 1054 兆帕,提高了 68%;杨氏模量从 193 GPa 提高到 221 GPa,提高了 14%。我们的研究成果为通过激光 AM 设计独特的微结构和先进的 MMC 材料奠定了知识基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
期刊最新文献
Predicting grain boundary sliding in metallic materials A Computational High Throughput Search of Symmetric Tilt Grain Boundaries in Cerium Oxide Tailoring the Ionic Conductivity of Composite Electrolyte by La-Doping Regulated Li4Ti5O12 for Solid State Lithium Metal Batteries Interpretable and Physics-Informed Modeling of Solidification in Alloy Systems: A Generalized Framework for Multi-Component Prediction Re enhancement effects: Development of a ReaxFFNiAlRe reactive force field for Ni-based superalloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1