首页 > 最新文献

Acta Materialia最新文献

英文 中文
Elaborately-designed high-performance BiFeO3-PbTiO3 ceramics through refreshing phase boundary 通过刷新相界精心设计高性能 BiFeO3-PbTiO3 陶瓷
IF 9.4 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-18 DOI: 10.1016/j.actamat.2024.120580
Zide Yu, Feiyu Su, Ao Tian, Xinchun Xie, Zijia Xu, Jian Fu, Ruzhong Zuo
The development of high-performance BiFeO3-PbTiO3 (BF-PT) piezoelectric compositions is highly desirable, but still challenged due to their high Curie temperature (Tc), large lattice distortion and octahedral tilt induced large antiferrodistortion in rhombohedral-tetragonal phase (R3c-P4mm) coexisted compositions. Here, a dual strategy by introducing the pseudo-cubic (Pc) phase in place of the R3c phase, and adjusting the lattice distortion of P4mm phase was realized in 0.60Bi0.95La0.05FeO3-(0.40-x)PbTiO3-xBaTiO3, where a large piezoelectric coefficient d33 of ∼410 pC/N, a high Tc of ∼416 °C as well as a good thermal stability can be achieved at x=0.20 composition. The structural analyses indicate that the superior piezoelectric activity should be associated with several factors including the coexistence of tetragonal (T) and Pc phases without octahedral tilt, the field-induced reversible T-Pc transition and the optimized c/a ratio. More pronouncedly, the extrinsic piezoelectric response induced by significantly enhanced domain wall motion contributes to almost ∼70 % of the quasi-static d33 value. Moreover, the robust domain texture up to ∼400 °C is responsible for its good thermal stability. These merits suggest giant potentials of the elaborately-designed composition as high-temperature piezoelectric materials.
开发高性能 BiFeO3-PbTiO3(BF-PT)压电材料是非常理想的,但由于其居里温度(Tc)高、晶格畸变大以及八面体倾斜在斜方体-四方相(R3c-P4mm)共存材料中引起的反铁电体畸变大,因此仍然面临挑战。在这里,通过引入假立方(Pc)相代替 R3c 相,并调整 P4mm 相的晶格畸变,实现了在 0.60Bi0.95La0.05FeO3-(0.40-x)PbTiO3-xBaTiO3中,在x=0.20的组成条件下,可以获得较大的压电系数d33(∼410 pC/N)、较高的Tc(∼416 °C)以及良好的热稳定性。结构分析表明,卓越的压电活性与多个因素有关,包括四方(T)相和无八面体倾斜的 Pc 相共存、场诱导的可逆 T-Pc 转变以及优化的 c/a 比。更明显的是,由显著增强的畴壁运动引起的外压电响应几乎占准静态 d33 值的∼70%。此外,高达 ∼400 °C 的坚固畴纹也是其良好热稳定性的原因。这些优点表明,精心设计的成分具有作为高温压电材料的巨大潜力。
{"title":"Elaborately-designed high-performance BiFeO3-PbTiO3 ceramics through refreshing phase boundary","authors":"Zide Yu, Feiyu Su, Ao Tian, Xinchun Xie, Zijia Xu, Jian Fu, Ruzhong Zuo","doi":"10.1016/j.actamat.2024.120580","DOIUrl":"https://doi.org/10.1016/j.actamat.2024.120580","url":null,"abstract":"The development of high-performance BiFeO<sub>3</sub>-PbTiO<sub>3</sub> (BF-PT) piezoelectric compositions is highly desirable, but still challenged due to their high Curie temperature (<em>T<sub>c</sub></em>), large lattice distortion and octahedral tilt induced large antiferrodistortion in rhombohedral-tetragonal phase (R3c-P4mm) coexisted compositions. Here, a dual strategy by introducing the pseudo-cubic (Pc) phase in place of the R3c phase, and adjusting the lattice distortion of P4mm phase was realized in 0.60Bi<sub>0.95</sub>La<sub>0.05</sub>FeO<sub>3</sub>-(0.40-x)PbTiO<sub>3</sub>-xBaTiO<sub>3</sub>, where a large piezoelectric coefficient <em>d<sub>33</sub></em> of ∼410 pC/N, a high <em>T<sub>c</sub></em> of ∼416 °C as well as a good thermal stability can be achieved at x=0.20 composition. The structural analyses indicate that the superior piezoelectric activity should be associated with several factors including the coexistence of tetragonal (T) and Pc phases without octahedral tilt, the field-induced reversible T-Pc transition and the optimized <em>c/a</em> ratio. More pronouncedly, the extrinsic piezoelectric response induced by significantly enhanced domain wall motion contributes to almost ∼70 % of the quasi-static <em>d<sub>33</sub></em> value. Moreover, the robust domain texture up to ∼400 °C is responsible for its good thermal stability. These merits suggest giant potentials of the elaborately-designed composition as high-temperature piezoelectric materials.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"21 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polarization Stability and Its Influence on Electrocaloric Effects of High Entropy Perovskite Oxide Films 极化稳定性及其对高熵过氧化物薄膜电致效应的影响
IF 9.4 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-17 DOI: 10.1016/j.actamat.2024.120576
Yeongwoo Son, Stanislav Udovenko, Sai Venkatra Gayathri Ayyagari, John Barber, Kae Nakamura, Christina M. Rost, Nasim Alem, Susan Trolier-McKinstry
In principle, the configurational entropy inherent in High Entropy Oxides (HEOs) could facilitate large electrocaloric effects (ECE) by promoting polar entropy. In this study, it is demonstrated that the time stability of the remanent polarization can be tuned via B-site disorder in High Entropy Perovskite Oxides (HEPO) films. Eight HEPO powders were synthesized; the propensity for perovskite phase formation was consistent with the Goldschmidt tolerance factor. While entropic contributions stabilize HEPO, they do not fully predict the stabilization. Relative dielectric permittivities between 2000 to 600 can be achieved for the B-site disordered HEPO films with loss tangents below 6% at room temperature. All films showed similar polarization-electric field loops with maximum polarization up to 48 <span><span style=""></span><span data-mathml='<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow is="true"><mi is="true">&#x3BC;</mi><mi mathvariant="normal" is="true">C</mi></mrow></math>' role="presentation" style="font-size: 90%; display: inline-block; position: relative;" tabindex="0"><svg aria-hidden="true" focusable="false" height="2.548ex" role="img" style="vertical-align: -0.697ex;" viewbox="0 -796.9 1326 1096.9" width="3.08ex" xmlns:xlink="http://www.w3.org/1999/xlink"><g fill="currentColor" stroke="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g is="true"><g is="true"><use xlink:href="#MJMATHI-3BC"></use></g><g is="true" transform="translate(603,0)"><use xlink:href="#MJMAIN-43"></use></g></g></g></svg><span role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow is="true"><mi is="true">μ</mi><mi is="true" mathvariant="normal">C</mi></mrow></math></span></span><script type="math/mml"><math><mrow is="true"><mi is="true">μ</mi><mi mathvariant="normal" is="true">C</mi></mrow></math></script></span> cm<sup>−2</sup> and a remanent polarization <span><span style=""></span><span data-mathml='<math xmlns="http://www.w3.org/1998/Math/MathML"><mo is="true">&#x2265;</mo></math>' role="presentation" style="font-size: 90%; display: inline-block; position: relative;" tabindex="0"><svg aria-hidden="true" focusable="false" height="2.086ex" role="img" style="vertical-align: -0.466ex;" viewbox="0 -697.5 778.5 898.2" width="1.808ex" xmlns:xlink="http://www.w3.org/1999/xlink"><g fill="currentColor" stroke="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g is="true"><use xlink:href="#MJMAIN-2265"></use></g></g></svg><span role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo is="true">≥</mo></math></span></span><script type="math/mml"><math><mo is="true">≥</mo></math></script></span> 20 <span><span style=""></span><span data-mathml='<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow is="true"><mi is="true">&#x3BC;</mi><mi mathvariant="normal" is="true">C</mi></mrow
从原理上讲,高熵氧化物(HEOs)固有的构型熵可以通过促进极性熵来促进大型电致效应(ECE)。本研究证明,可以通过高熵过氧化物(HEPO)薄膜中的 B 位无序来调节剩电位极化的时间稳定性。研究人员合成了八种 HEPO 粉末;包晶相形成的倾向与戈德施密特公差因子一致。虽然熵贡献使 HEPO 趋于稳定,但并不能完全预测其稳定性。B 位无序 HEPO 薄膜的相对介电常数介于 2000 到 600 之间,室温下的损耗切线低于 6%。所有薄膜都显示出相似的极化-电场环路,最大极化可达 48 μCμC cm-2,剩极化≥ 20 μCμC cm-2,这是在室温下以 10 kHz 频率、1100 kV cm-1 的外加电场测量的。随着 B 位上平均离子尺寸的增加,介电最大值(Tmax)温度从 105°C 上升到 225°C。利用正-上-负-下(PUND)测量法研究了 HEPO 薄膜的极化稳定性。通过利用剩电位极化的时间稳定性,可以预测在 1120 kV cm-1 的外加电场下,HEPO 薄膜的增强电解效应分别为 14.9 K 和 11.5 J Kg-1 K-1,电解温度变化和熵变化分别为 14.9 K 和 11.5 J Kg-1 K-1。
{"title":"Polarization Stability and Its Influence on Electrocaloric Effects of High Entropy Perovskite Oxide Films","authors":"Yeongwoo Son, Stanislav Udovenko, Sai Venkatra Gayathri Ayyagari, John Barber, Kae Nakamura, Christina M. Rost, Nasim Alem, Susan Trolier-McKinstry","doi":"10.1016/j.actamat.2024.120576","DOIUrl":"https://doi.org/10.1016/j.actamat.2024.120576","url":null,"abstract":"In principle, the configurational entropy inherent in High Entropy Oxides (HEOs) could facilitate large electrocaloric effects (ECE) by promoting polar entropy. In this study, it is demonstrated that the time stability of the remanent polarization can be tuned via B-site disorder in High Entropy Perovskite Oxides (HEPO) films. Eight HEPO powders were synthesized; the propensity for perovskite phase formation was consistent with the Goldschmidt tolerance factor. While entropic contributions stabilize HEPO, they do not fully predict the stabilization. Relative dielectric permittivities between 2000 to 600 can be achieved for the B-site disordered HEPO films with loss tangents below 6% at room temperature. All films showed similar polarization-electric field loops with maximum polarization up to 48 &lt;span&gt;&lt;span style=\"\"&gt;&lt;/span&gt;&lt;span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;&amp;#x3BC;&lt;/mi&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"&gt;&lt;svg aria-hidden=\"true\" focusable=\"false\" height=\"2.548ex\" role=\"img\" style=\"vertical-align: -0.697ex;\" viewbox=\"0 -796.9 1326 1096.9\" width=\"3.08ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"&gt;&lt;g is=\"true\"&gt;&lt;g is=\"true\"&gt;&lt;use xlink:href=\"#MJMATHI-3BC\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g is=\"true\" transform=\"translate(603,0)\"&gt;&lt;use xlink:href=\"#MJMAIN-43\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span role=\"presentation\"&gt;&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;μ&lt;/mi&gt;&lt;mi is=\"true\" mathvariant=\"normal\"&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;script type=\"math/mml\"&gt;&lt;math&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;μ&lt;/mi&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/script&gt;&lt;/span&gt; cm&lt;sup&gt;−2&lt;/sup&gt; and a remanent polarization &lt;span&gt;&lt;span style=\"\"&gt;&lt;/span&gt;&lt;span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mo is=\"true\"&gt;&amp;#x2265;&lt;/mo&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"&gt;&lt;svg aria-hidden=\"true\" focusable=\"false\" height=\"2.086ex\" role=\"img\" style=\"vertical-align: -0.466ex;\" viewbox=\"0 -697.5 778.5 898.2\" width=\"1.808ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"&gt;&lt;g is=\"true\"&gt;&lt;use xlink:href=\"#MJMAIN-2265\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span role=\"presentation\"&gt;&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mo is=\"true\"&gt;≥&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;script type=\"math/mml\"&gt;&lt;math&gt;&lt;mo is=\"true\"&gt;≥&lt;/mo&gt;&lt;/math&gt;&lt;/script&gt;&lt;/span&gt; 20 &lt;span&gt;&lt;span style=\"\"&gt;&lt;/span&gt;&lt;span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;&amp;#x3BC;&lt;/mi&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;C&lt;/mi&gt;&lt;/mrow","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"117 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Grain boundary segregation spectrum in basal-textured Mg alloys: From solute decoration to structural transition 基底纹理镁合金中的晶界偏析谱:从溶质装饰到结构转变
IF 9.4 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-17 DOI: 10.1016/j.actamat.2024.120556
Anumoy Ganguly, Hexin Wang, Julien Guénolé, Aruna Prakash, Sandra Korte-Kerzel, Talal Al-Samman, Zhuocheng Xie
Mg alloys are promising lightweight structural materials due to their low density and excellent mechanical properties. However, their limited formability and ductility necessitate improvements in these properties, specifically through texture modification via grain boundary segregation. While significant efforts have been made, the segregation behavior in Mg polycrystals, particularly with basal texture, remains largely unexplored. In this study, we performed atomistic simulations to investigate grain boundary segregation in dilute and concentrated solid solution Mg-Al alloys. We computed the segregation energy spectrum of basal-textured Mg polycrystals, highlighting the contribution from specific grain boundary sites, such as junctions, and identified a newly discovered bimodal distribution which is distinct compared to the conventional skew-normal distribution found in randomly-oriented polycrystals. Using a hybrid molecular dynamics/Monte Carlo approach, we simulated segregation behavior at finite temperatures, identifying grain boundary structural transitions, particularly the varied fraction and morphology of topologically close-packed grain boundary phases when changing thermodynamic variables. The outcomes of this study offer crucial insights into basal-textured grain boundary segregation and phase formation, which can be extended to other relevant Mg alloys containing topologically close-packed intermetallics.
镁合金具有低密度和优异的机械性能,是很有前途的轻质结构材料。然而,由于镁合金的可成形性和延展性有限,因此有必要通过晶界偏析来改善这些性能。尽管人们已经做出了巨大努力,但镁多晶体中的偏析行为,尤其是基底纹理中的偏析行为,在很大程度上仍未得到探索。在这项研究中,我们进行了原子模拟,以研究稀释和浓缩固溶体镁铝合金中的晶界偏析。我们计算了基底纹理镁多晶体的偏析能谱,强调了特定晶界位点(如接合点)的贡献,并确定了新发现的双峰分布,该分布与随机取向多晶体中发现的传统偏斜正态分布截然不同。利用分子动力学/蒙特卡洛混合方法,我们模拟了有限温度下的偏析行为,确定了晶界结构的转变,特别是改变热力学变量时拓扑紧密堆积晶界相的不同组分和形态。这项研究的成果为基底纹理晶界偏析和相的形成提供了重要的见解,并可将其推广到含有拓扑紧密堆积金属间化合物的其他相关镁合金。
{"title":"Grain boundary segregation spectrum in basal-textured Mg alloys: From solute decoration to structural transition","authors":"Anumoy Ganguly, Hexin Wang, Julien Guénolé, Aruna Prakash, Sandra Korte-Kerzel, Talal Al-Samman, Zhuocheng Xie","doi":"10.1016/j.actamat.2024.120556","DOIUrl":"https://doi.org/10.1016/j.actamat.2024.120556","url":null,"abstract":"Mg alloys are promising lightweight structural materials due to their low density and excellent mechanical properties. However, their limited formability and ductility necessitate improvements in these properties, specifically through texture modification via grain boundary segregation. While significant efforts have been made, the segregation behavior in Mg polycrystals, particularly with basal texture, remains largely unexplored. In this study, we performed atomistic simulations to investigate grain boundary segregation in dilute and concentrated solid solution Mg-Al alloys. We computed the segregation energy spectrum of basal-textured Mg polycrystals, highlighting the contribution from specific grain boundary sites, such as junctions, and identified a newly discovered bimodal distribution which is distinct compared to the conventional skew-normal distribution found in randomly-oriented polycrystals. Using a hybrid molecular dynamics/Monte Carlo approach, we simulated segregation behavior at finite temperatures, identifying grain boundary structural transitions, particularly the varied fraction and morphology of topologically close-packed grain boundary phases when changing thermodynamic variables. The outcomes of this study offer crucial insights into basal-textured grain boundary segregation and phase formation, which can be extended to other relevant Mg alloys containing topologically close-packed intermetallics.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"8 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Grain boundary nanochemistry and intergranular corrosion of Fe-0.01wt.%P alloy: Roles of elemental segregations and misorientation Fe-0.01wt.%P 合金的晶界纳米化学和晶间腐蚀:元素偏析和错取向的作用
IF 9.4 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-17 DOI: 10.1016/j.actamat.2024.120577
The grain boundary (GB) segregation of alloying elements in an ultralow carbon Fe–P alloy was investigated at different annealing temperatures (500°C,…
研究了超低碳Fe-P合金在不同退火温度(500°C、250°C、250°C、250°C)下合金元素的晶界(GB)偏析。
{"title":"Grain boundary nanochemistry and intergranular corrosion of Fe-0.01wt.%P alloy: Roles of elemental segregations and misorientation","authors":"","doi":"10.1016/j.actamat.2024.120577","DOIUrl":"https://doi.org/10.1016/j.actamat.2024.120577","url":null,"abstract":"The grain boundary (GB) segregation of alloying elements in an ultralow carbon Fe–P alloy was investigated at different annealing temperatures (500°C,…","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"80 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mesoscale description of interface-mediated plasticity 界面介导可塑性的中尺度描述
IF 9.4 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-17 DOI: 10.1016/j.actamat.2024.120552
Jinxin Yu, Alfonso H.W. Ngan, David J. Srolovitz, Jian Han
Dislocation-interface interactions dictate the mechanical properties of polycrystalline materials through dislocation absorption, emission, reflection, and interface sliding. We derive a mesoscale interface boundary condition to describe these, based on bicrystallography and Burgers vector reaction/conservation. The proposed interface boundary condition is built upon Burgers vector reaction kinetics and is applicable to any type of interfaces in crystalline materials with any number of slip systems. This approach is applied to predict slip transfer for any crystalline interface and stress state; comparisons are made to widely-applied empirical methods. The results are directly applicable to many existing dislocation plasticity simulation methods.
位错-界面相互作用通过位错吸收、发射、反射和界面滑动决定了多晶材料的机械特性。我们基于双晶学和布尔格斯矢量反应/守恒,推导出一种中尺度界面边界条件来描述这些相互作用。所提出的界面边界条件建立在布尔格斯矢量反应动力学的基础上,适用于具有任意数量滑移系统的晶体材料中的任何类型的界面。这种方法可用于预测任何晶体界面和应力状态下的滑移;并与广泛应用的经验方法进行了比较。研究结果直接适用于许多现有的位错塑性模拟方法。
{"title":"Mesoscale description of interface-mediated plasticity","authors":"Jinxin Yu, Alfonso H.W. Ngan, David J. Srolovitz, Jian Han","doi":"10.1016/j.actamat.2024.120552","DOIUrl":"https://doi.org/10.1016/j.actamat.2024.120552","url":null,"abstract":"Dislocation-interface interactions dictate the mechanical properties of polycrystalline materials through dislocation absorption, emission, reflection, and interface sliding. We derive a mesoscale interface boundary condition to describe these, based on bicrystallography and Burgers vector reaction/conservation. The proposed interface boundary condition is built upon Burgers vector reaction kinetics and is applicable to any type of interfaces in crystalline materials with any number of slip systems. This approach is applied to predict slip transfer for any crystalline interface and stress state; comparisons are made to widely-applied empirical methods. The results are directly applicable to many existing dislocation plasticity simulation methods.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"31 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the atomistic origin of internal length scale in strain-gradient plasticity models: The case of grain boundary structures and energies 应变梯度塑性模型中内部长度尺度的原子论起源:晶界结构与能量
IF 9.4 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-17 DOI: 10.1016/j.actamat.2024.120555
Houssam Kharouji, Vincent Taupin, Julien Guénolé
The mechanical behavior of polycrystalline materials is controlled by microstructural size effects such as grain size or precipitate size. Various models of strain gradient plasticity have been proposed to capture such size effects, many of which have incorporated geometrically-necessary dislocation (GND) densities to introduce characteristic internal lengths. Recent developments have focused on models that incorporate a GND density into the internal energy functional. In such models, one needs to physically justify the functional form chosen and quantify the inherent internal length parameter. Our present study aims at probing relevant forms and internal length values in the case of grain boundary (GB) atomistic structures and core energies. We use an atomistic-to-continuum crossover approach that predicts an atomistic structure dependent GB energy by molecular static simulations, which is then recovered at the continuum-level by using a strain gradient, atomistically informed, field dislocation mechanics fast Fourier transform model. This allows (i) delineating the atomistic structure of GBs using an equivalent Nye GND density, and (ii) capturing the associated continuous elastic fields in the GB core area. We probe (i) a generalized non-quadratic GND density dependent energy functional to account for the core energy of defects, and (ii) elucidate the contributions of core versus elastic energy to the overall GB excess energy. We investigate and discuss the possible relevant choices for the energy functional form, as well as the physical origin of the inherent internal length parameter and its dependence to the types of grain boundaries, atomistic structures, and spatial resolution.
多晶材料的机械行为受微结构尺寸效应(如晶粒尺寸或沉淀尺寸)的控制。为了捕捉这种尺寸效应,人们提出了各种应变梯度塑性模型,其中许多模型都加入了几何必要位错(GND)密度,以引入特征内长。最近的发展集中于将 GND 密度纳入内能函数的模型。在这些模型中,我们需要从物理上证明所选择的函数形式,并量化固有的内部长度参数。本研究旨在探究晶界(GB)原子结构和核心能量的相关形式和内部长度值。我们采用原子到连续的交叉方法,通过分子静态模拟预测与原子结构相关的 GB 能量,然后使用应变梯度、原子信息、场位错力学快速傅立叶变换模型在连续层面恢复该能量。这样就能(i)使用等效奈伊 GND 密度来划分 GB 的原子结构,(ii)捕捉 GB 核心区域的相关连续弹性场。我们探究了(i) 与 GND 密度相关的广义非二次能量函数,以解释缺陷的核心能量,(ii) 阐明核心能量和弹性能量对整个 GB 过剩能量的贡献。我们研究并讨论了能量函数形式的可能相关选择,以及固有内部长度参数的物理来源及其与晶界类型、原子结构和空间分辨率的关系。
{"title":"On the atomistic origin of internal length scale in strain-gradient plasticity models: The case of grain boundary structures and energies","authors":"Houssam Kharouji, Vincent Taupin, Julien Guénolé","doi":"10.1016/j.actamat.2024.120555","DOIUrl":"https://doi.org/10.1016/j.actamat.2024.120555","url":null,"abstract":"The mechanical behavior of polycrystalline materials is controlled by microstructural size effects such as grain size or precipitate size. Various models of strain gradient plasticity have been proposed to capture such size effects, many of which have incorporated geometrically-necessary dislocation (GND) densities to introduce characteristic internal lengths. Recent developments have focused on models that incorporate a GND density into the internal energy functional. In such models, one needs to physically justify the functional form chosen and quantify the inherent internal length parameter. Our present study aims at probing relevant forms and internal length values in the case of grain boundary (GB) atomistic structures and core energies. We use an atomistic-to-continuum crossover approach that predicts an atomistic structure dependent GB energy by molecular static simulations, which is then recovered at the continuum-level by using a strain gradient, atomistically informed, field dislocation mechanics fast Fourier transform model. This allows (i) delineating the atomistic structure of GBs using an equivalent Nye GND density, and (ii) capturing the associated continuous elastic fields in the GB core area. We probe (i) a generalized non-quadratic GND density dependent energy functional to account for the core energy of defects, and (ii) elucidate the contributions of core versus elastic energy to the overall GB excess energy. We investigate and discuss the possible relevant choices for the energy functional form, as well as the physical origin of the inherent internal length parameter and its dependence to the types of grain boundaries, atomistic structures, and spatial resolution.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"13 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Color-coding real-time detection for the health of lithium-ion batteries 用颜色编码实时检测锂离子电池的健康状况
IF 9.4 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-15 DOI: 10.1016/j.actamat.2024.120562
Yuanhui Su, Yu Huan, Wang Liu, Mengyue Ma, Jinkai Li, Tao Wei, Yunhui Huang, Kevin Huang
Lithium-ion batteries (LIBs) are pivotal energy devices in our daily lives, yet ensuring the quality and health of LIBs throughout their manufacturing and application processes remains a significant challenge. Here we propose a universal “color-coding” technique to indicate the health of LIBs, by which specific property characteristic and evolution inside LIBs can be unfolded. By defining the standard color coding for the entire manufacturing and application processes of LIBs, we show the change in material characteristics during various processes can be described by variations in standard color coding. Therefore, by establishing a universal color-property database, the proposed “color-coding” method has potential to be used as a practical tool to ensure the quality of materials and healthy operation of batteries.
锂离子电池(LIB)是我们日常生活中举足轻重的能源设备,但在整个生产和应用过程中确保锂离子电池的质量和健康仍然是一项重大挑战。在此,我们提出了一种通用的 "颜色编码 "技术来指示锂离子电池的健康状况,通过这种技术可以了解锂离子电池的具体特性和内部演变情况。通过为锂电池的整个制造和应用过程定义标准颜色编码,我们发现在不同过程中材料特性的变化可以通过标准颜色编码的变化来描述。因此,通过建立通用的颜色特性数据库,所提出的 "颜色编码 "方法有望成为确保材料质量和电池健康运行的实用工具。
{"title":"Color-coding real-time detection for the health of lithium-ion batteries","authors":"Yuanhui Su, Yu Huan, Wang Liu, Mengyue Ma, Jinkai Li, Tao Wei, Yunhui Huang, Kevin Huang","doi":"10.1016/j.actamat.2024.120562","DOIUrl":"https://doi.org/10.1016/j.actamat.2024.120562","url":null,"abstract":"Lithium-ion batteries (LIBs) are pivotal energy devices in our daily lives, yet ensuring the quality and health of LIBs throughout their manufacturing and application processes remains a significant challenge. Here we propose a universal “color-coding” technique to indicate the health of LIBs, by which specific property characteristic and evolution inside LIBs can be unfolded. By defining the standard color coding for the entire manufacturing and application processes of LIBs, we show the change in material characteristics during various processes can be described by variations in standard color coding. Therefore, by establishing a universal color-property database, the proposed “color-coding” method has potential to be used as a practical tool to ensure the quality of materials and healthy operation of batteries.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"17 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of high energy ball milling, heat treatment and spark plasma sintering on structure, composition, thermal stability and magnetism in CoCrFeNiGax (x = 0.5; 1) high entropy alloys 高能球磨、热处理和火花等离子烧结对 CoCrFeNiGax (x = 0.5; 1) 高熵合金的结构、成分、热稳定性和磁性的影响
IF 9.4 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-15 DOI: 10.1016/j.actamat.2024.120569
N.F. Shkodich, T. Smoliarova, H. Ali, B. Eggert, Z. Rao, M. Spasova, I. Tarasov, H. Wende, K. Ollefs, B. Gault, M. Farle
Nanocrystalline (∼10 nm) singe-fcc CoCrFeNiGax (x = 0.5, 1.0) high entropy alloy (HEA) particles with excellent structural and compositional homogeneity were prepared from elemental powders using a single-step, short-term (190 min) high energy ball milling (HEBM) at room temperature (RT). Both HEA powders exhibit paramagnetic behaviour at RT with a small ferromagnetic contribution at low fields (the saturation magnetization Ms= 4.5 Am2/kg – 7.5 Am2/kg; the average Curie temperature Tc = 130 K – 150 K). They are thermally stable up to 1295 K–1305 K despite the low melting Ga (302.9 K). Heat treatment up to 1000 K enhances Ms to 59.9 Am2/kg and Tc to 740 K for the CoCrFeNiGa HEA powder due to an irreversible fccbcc structural transformation, whereas the magnetic properties of CoCrFeNiGa0.5 do not show this enhancement. In-situ TEM heating reveals nanosized σ-phase Cr-rich precipitates (< 50 nm) at 875 K only for the CoCrFeNiGa HEA powder. Spark plasma sintering (SPS) of powders produces homogeneous nanocrystalline bulk HEAs. SPS at 1073 K of the CoCrFeNiGa0.5 powder increased the crystallinity of the fcc phase. Three-dimensional local compositional mapping at atomic resolution by atom probe tomography indicates a homogeneous distribution of all elements. Bulk HEAs exhibit similar magnetic behavior to heat-treated HEA powders. Combining HEBM and SPS yields homogeneous bulk HEAs with low-melting Ga and enhanced structural, composition, thermal stability, as well as improved magnetic properties (Ms = 55Am2/kg and Tc = 750 K), which 45% and 47 K higher, respectively, compared to conventional melting approaches.
在室温(RT)下,采用单步短期(190 分钟)高能球磨法(HEBM)从元素粉末制备出了具有优异结构和成分均匀性的纳米晶(∼10 nm)单共晶 CoCrFeNiGax(x = 0.5,1.0)高熵合金(HEA)颗粒。两种 HEA 粉末在室温下均表现出顺磁性,在低磁场下铁磁性很小(饱和磁化率 Ms= 4.5 Am2/kg - 7.5 Am2/kg;平均居里温度 Tc= 130 K - 150 K)。尽管熔化镓(302.9 K)较低,但它们的热稳定性高达 1295 K-1305 K。由于发生了不可逆的 fcc→bcc 结构转变,热处理至 1000 K 可使 CoCrFeNiGa HEA 粉末的 Ms 值提高到 59.9 Am2/kg,Tc 值提高到 740 K,而 CoCrFeNiGa0.5 的磁性能却没有这种提高。原位 TEM 加热显示,在 875 K 时,仅 CoCrFeNiGa HEA 粉末出现纳米级 σ 相富铬沉淀(50 nm)。粉末的火花等离子烧结(SPS)可产生均匀的纳米晶块状 HEA。在 1073 K 下对 CoCrFeNiGa0.5 粉末进行 SPS 烧结提高了 fcc 相的结晶度。原子探针断层扫描技术以原子分辨率绘制的三维局部成分图表明,所有元素的分布都很均匀。块状 HEA 与热处理 HEA 粉末表现出相似的磁性。将 HEBM 和 SPS 结合使用,可得到具有低熔点 Ga 的均质块状 HEAs,其结构、成分、热稳定性以及磁性能(Ms = 55Am2/kg 和 Tc = 750 K)均得到增强,与传统熔化方法相比,分别提高了 45% 和 47 K。
{"title":"Effect of high energy ball milling, heat treatment and spark plasma sintering on structure, composition, thermal stability and magnetism in CoCrFeNiGax (x = 0.5; 1) high entropy alloys","authors":"N.F. Shkodich, T. Smoliarova, H. Ali, B. Eggert, Z. Rao, M. Spasova, I. Tarasov, H. Wende, K. Ollefs, B. Gault, M. Farle","doi":"10.1016/j.actamat.2024.120569","DOIUrl":"https://doi.org/10.1016/j.actamat.2024.120569","url":null,"abstract":"Nanocrystalline (∼10 nm) singe-<em>fcc</em> CoCrFeNiGa<sub>x</sub> (x = 0.5, 1.0) high entropy alloy (HEA) particles with excellent structural and compositional homogeneity were prepared from elemental powders using a single-step, short-term (190 min) high energy ball milling (HEBM) at room temperature (RT). Both HEA powders exhibit paramagnetic behaviour at RT with a small ferromagnetic contribution at low fields (the saturation magnetization <em>M</em><sub>s</sub>= 4.5 Am<sup>2</sup>/kg – 7.5 Am<sup>2</sup>/kg; the average Curie temperature <em>T</em><sub>c</sub> = 130 K – 150 K). They are thermally stable up to 1295 K–1305 K despite the low melting Ga (302.9 K). Heat treatment up to 1000 K enhances <em>M</em><sub>s</sub> to 59.9 Am<sup>2</sup>/kg and <em>T</em><sub>c</sub> to 740 K for the CoCrFeNiGa HEA powder due to an irreversible <em>fcc</em>→<em>bcc</em> structural transformation, whereas the magnetic properties of CoCrFeNiGa<sub>0.5</sub> do not show this enhancement. In-situ TEM heating reveals nanosized σ-phase Cr-rich precipitates (&lt; 50 nm) at 875 K only for the CoCrFeNiGa HEA powder. Spark plasma sintering (SPS) of powders produces homogeneous nanocrystalline bulk HEAs. SPS at 1073 K of the CoCrFeNiGa<sub>0.5</sub> powder increased the crystallinity of the <em>fcc</em> phase. Three-dimensional local compositional mapping at atomic resolution by atom probe tomography indicates a homogeneous distribution of all elements. Bulk HEAs exhibit similar magnetic behavior to heat-treated HEA powders. Combining HEBM and SPS yields homogeneous bulk HEAs with low-melting Ga and enhanced structural, composition, thermal stability, as well as improved magnetic properties (<em>M</em><sub>s</sub> = 55Am<sup>2</sup>/kg and <em>T</em><sub>c</sub> = 750 K), which 45% and 47 K higher, respectively, compared to conventional melting approaches.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"136 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phase-Field Modeling of Thermally-Grown Oxide and Damage Evolution in Environmental Barrier Coatings 环境阻隔涂层中热生长氧化物和损伤演变的相场建模
IF 9.4 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-15 DOI: 10.1016/j.actamat.2024.120571
Tian-Le Cheng, Fei Xue, Yinkai Lei, Richard P. Oleksak, Ömer N. Doğan, You-Hai Wen
Silicon carbide-based ceramic matrix composites protected by environmental barrier coatings (EBCs) present a promising materials solution for next-generation gas turbines. Developming more robust and efficient EBCs is therefore of significant technological importance. During the service in high-temperature oxidative environments, there is a thermally grown oxide (TGO) layer, spontaneously formed in the EBC system. TGO is recognized as a critical factor for the degradation and failure of EBCs, yet the detailed mechanisms of TGO growth and its effect on EBC failure remain unclear. In this study we develop a comprehensive chemo-mechano-phase-field model to simulate growth of the TGO in EBCs, factoring in creep and deformation, and especially the cracking behaviors. The volume expansion due to TGO growth and the resulting large inelastic deformation are addressed by using our recently developed, so-called incremental realization of inelastic deformation (IRID) algorithm, in combination with an adapted Hu-Chen spectral solver for elasticity. Simulations of TGO growth are performed considering different growth modes of TGOs determined mainly by the ratio of oxidant permeability in the topcoat to that in the TGO itself. Large-scale three-dimensional (3D) simulations are performed to model the formation of interconnecting vertical/channel cracks (often called ‘mud cracks’). The simulated crack morphology are in excellent agreement with the experimental observations from the literature. The simulations also provide insights into the cracking of EBCs and its dependence on the structure and constituent properties of the coating system. These results demonstrate the developed damage model can be a useful tool for design of more durable EBCs.
碳化硅基陶瓷基复合材料在环境屏障涂层(EBC)的保护下,为下一代燃气轮机提供了一种前景广阔的材料解决方案。因此,开发更坚固、更高效的 EBC 具有重要的技术意义。在高温氧化环境中服役期间,EBC 系统中会自发形成热生长氧化物(TGO)层。TGO 被认为是导致 EBC 退化和失效的关键因素,但 TGO 生长的详细机制及其对 EBC 失效的影响仍不清楚。在本研究中,我们建立了一个全面的化学-机械-相场模型来模拟 EBC 中 TGO 的生长,并将蠕变和变形,特别是开裂行为考虑在内。我们采用最近开发的所谓 "非弹性变形增量实现(IRID)"算法,并结合经过调整的胡琴弹性谱求解器,解决了 TGO 生长引起的体积膨胀以及由此产生的巨大非弹性变形问题。对 TGO 的生长进行了模拟,考虑了 TGO 的不同生长模式,这些模式主要取决于面层中的氧化剂渗透性与 TGO 本身的氧化剂渗透性之比。大规模三维(3D)模拟用于模拟相互连接的垂直/通道裂缝(通常称为 "泥浆裂缝")的形成。模拟的裂纹形态与文献中的实验观察结果非常吻合。模拟结果还有助于深入了解 EBC 的开裂及其与涂层系统结构和组成特性的关系。这些结果表明,所开发的损伤模型是设计更耐用的 EBC 的有用工具。
{"title":"Phase-Field Modeling of Thermally-Grown Oxide and Damage Evolution in Environmental Barrier Coatings","authors":"Tian-Le Cheng, Fei Xue, Yinkai Lei, Richard P. Oleksak, Ömer N. Doğan, You-Hai Wen","doi":"10.1016/j.actamat.2024.120571","DOIUrl":"https://doi.org/10.1016/j.actamat.2024.120571","url":null,"abstract":"Silicon carbide-based ceramic matrix composites protected by environmental barrier coatings (EBCs) present a promising materials solution for next-generation gas turbines. Developming more robust and efficient EBCs is therefore of significant technological importance. During the service in high-temperature oxidative environments, there is a thermally grown oxide (TGO) layer, spontaneously formed in the EBC system. TGO is recognized as a critical factor for the degradation and failure of EBCs, yet the detailed mechanisms of TGO growth and its effect on EBC failure remain unclear. In this study we develop a comprehensive chemo-mechano-phase-field model to simulate growth of the TGO in EBCs, factoring in creep and deformation, and especially the cracking behaviors. The volume expansion due to TGO growth and the resulting large inelastic deformation are addressed by using our recently developed, so-called incremental realization of inelastic deformation (IRID) algorithm, in combination with an adapted Hu-Chen spectral solver for elasticity. Simulations of TGO growth are performed considering different growth modes of TGOs determined mainly by the ratio of oxidant permeability in the topcoat to that in the TGO itself. Large-scale three-dimensional (3D) simulations are performed to model the formation of interconnecting vertical/channel cracks (often called ‘mud cracks’). The simulated crack morphology are in excellent agreement with the experimental observations from the literature. The simulations also provide insights into the cracking of EBCs and its dependence on the structure and constituent properties of the coating system. These results demonstrate the developed damage model can be a useful tool for design of more durable EBCs.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"21 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Achieving superior ductility with ultrahigh strength via deformation and strain hardening in the non-recrystallized regions of the heterogeneous-structured high-entropy alloy 通过在异质结构高熵合金的非再结晶区域进行变形和应变硬化,实现超高强度的卓越延展性
IF 9.4 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-14 DOI: 10.1016/j.actamat.2024.120572
Hongchao Li, Jun Wang, Wenyuan Zhang, Jiawang Zhao, Jinshan Li, M.W. Fu
Developing metallic structural materials with ultra-high strength and exceptional ductility remains a significant challenge due to the trade-off between both properties. This study presents a heterogeneous-structured high-entropy alloy achieving a superior combination of strength and ductility compared to the reported heterogeneous-structured HEAs through deformation and strain hardening in the non-recrystallized regions. The cold rolling followed by annealing at 760°C resulted in a heterogeneous microstructure consisting of a small fraction of ultrafine recrystallized grains and extensive non-recrystallized regions, with a significant amount of L12 precipitates throughout the alloy. The architected microstructure led to a significant enhancement of yield strength through mechanisms including dislocation strengthening, L12 strengthening, and grain boundary strengthening. During the deformation, the non-recrystallized regions accommodated substantial strain through the reactivation of pre-existing deformation bands and the synergistic deformation of the FCC and L12 phases, thereby markedly enhancing ductility. Moreover, the metastable FCC matrix underwent FCC→BCC phase transformation, leading to the formation of numerous short-range BCC domains, which further contributed to the pronounced strain hardening. Consequently, the alloy annealing at 760 °C achieved a yield strength of 1.73 GPa, an ultimate strength of 2.05 GPa, and an elongation of 21.0%. This study underscores a novel strategy for the concurrent enhancement of strength and ductility and provides valuable insights for the design of high-performance alloys.
开发具有超高强度和超强延展性的金属结构材料仍然是一项重大挑战,因为这两种性能之间存在权衡。本研究介绍了一种异质结构高熵合金,与已报道的异质结构高熵合金相比,这种合金通过非再结晶区域的变形和应变硬化,实现了强度和延展性的完美结合。冷轧后在 760°C 下退火,形成了由少量超细再结晶晶粒和大量非再结晶区域组成的异质微观结构,整个合金中含有大量 L12 沉淀。通过位错强化、L12 强化和晶界强化等机制,这种结构化微观组织显著提高了屈服强度。在变形过程中,非重结晶区域通过重新激活先前存在的变形带以及 FCC 相和 L12 相的协同变形来容纳大量应变,从而显著提高了延展性。此外,可蜕变的 FCC 基体发生了 FCC→BCC 相变,形成了大量短程 BCC 域,进一步促进了明显的应变硬化。因此,在 760 °C 下退火的合金达到了 1.73 GPa 的屈服强度、2.05 GPa 的极限强度和 21.0% 的伸长率。这项研究强调了同时提高强度和延展性的新策略,并为高性能合金的设计提供了宝贵的见解。
{"title":"Achieving superior ductility with ultrahigh strength via deformation and strain hardening in the non-recrystallized regions of the heterogeneous-structured high-entropy alloy","authors":"Hongchao Li, Jun Wang, Wenyuan Zhang, Jiawang Zhao, Jinshan Li, M.W. Fu","doi":"10.1016/j.actamat.2024.120572","DOIUrl":"https://doi.org/10.1016/j.actamat.2024.120572","url":null,"abstract":"Developing metallic structural materials with ultra-high strength and exceptional ductility remains a significant challenge due to the trade-off between both properties. This study presents a heterogeneous-structured high-entropy alloy achieving a superior combination of strength and ductility compared to the reported heterogeneous-structured HEAs through deformation and strain hardening in the non-recrystallized regions. The cold rolling followed by annealing at 760°C resulted in a heterogeneous microstructure consisting of a small fraction of ultrafine recrystallized grains and extensive non-recrystallized regions, with a significant amount of L1<sub>2</sub> precipitates throughout the alloy. The architected microstructure led to a significant enhancement of yield strength through mechanisms including dislocation strengthening, L1<sub>2</sub> strengthening, and grain boundary strengthening. During the deformation, the non-recrystallized regions accommodated substantial strain through the reactivation of pre-existing deformation bands and the synergistic deformation of the FCC and L1<sub>2</sub> phases, thereby markedly enhancing ductility. Moreover, the metastable FCC matrix underwent FCC→BCC phase transformation, leading to the formation of numerous short-range BCC domains, which further contributed to the pronounced strain hardening. Consequently, the alloy annealing at 760 °C achieved a yield strength of 1.73 GPa, an ultimate strength of 2.05 GPa, and an elongation of 21.0%. This study underscores a novel strategy for the concurrent enhancement of strength and ductility and provides valuable insights for the design of high-performance alloys.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"45 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Acta Materialia
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1