{"title":"Outlook for improving energy efficiency, conversion rates, and selectivity of plasma-assisted CO2 conversion","authors":"Tianyu Li , Yuting Gao , Renwu Zhou , Tianqi Zhang , Kostya (Ken) Ostrikov","doi":"10.1016/j.cogsc.2024.100915","DOIUrl":null,"url":null,"abstract":"<div><p>With the escalation of global climate change, reducing carbon emissions and achieving carbon neutrality have gradually become significant concerns. Conversion of CO<sub>2</sub> into valuable products is regarded as a viable solution to address these challenges. In comparison to other catalytic approaches, non-thermal plasma (NTP) offers diverse reaction pathways for CO<sub>2</sub> conversion under mild process conditions and can ensure selective production of value-added chemicals and fuels when combined with catalytic materials. However, further research is needed to translate plasma-based technologies to the industrial scale. This article focuses on three crucial characteristics of CO<sub>2</sub> conversion in NTP: energy efficiency, conversion rate, and selectivity. We overview recent research advances, outline challenges for technological innovations, and propose potential directions for future research.</p></div>","PeriodicalId":54228,"journal":{"name":"Current Opinion in Green and Sustainable Chemistry","volume":"47 ","pages":"Article 100915"},"PeriodicalIF":9.3000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Green and Sustainable Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452223624000361","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With the escalation of global climate change, reducing carbon emissions and achieving carbon neutrality have gradually become significant concerns. Conversion of CO2 into valuable products is regarded as a viable solution to address these challenges. In comparison to other catalytic approaches, non-thermal plasma (NTP) offers diverse reaction pathways for CO2 conversion under mild process conditions and can ensure selective production of value-added chemicals and fuels when combined with catalytic materials. However, further research is needed to translate plasma-based technologies to the industrial scale. This article focuses on three crucial characteristics of CO2 conversion in NTP: energy efficiency, conversion rate, and selectivity. We overview recent research advances, outline challenges for technological innovations, and propose potential directions for future research.
期刊介绍:
The Current Opinion journals address the challenge specialists face in keeping up with the expanding information in their fields. In Current Opinion in Green and Sustainable Chemistry, experts present views on recent advances in a clear and readable form. The journal also provides evaluations of the most noteworthy papers, annotated by experts, from the extensive pool of original publications in Green and Sustainable Chemistry.