{"title":"Big data challenges and opportunities in Internet of Vehicles: a systematic review","authors":"Atefeh Hemmati, Mani Zarei, A. Rahmani","doi":"10.1108/ijpcc-09-2023-0250","DOIUrl":null,"url":null,"abstract":"\nPurpose\nBig data challenges and opportunities on the Internet of Vehicles (IoV) have emerged as a transformative paradigm to change intelligent transportation systems. With the growth of data-driven applications and the advances in data analysis techniques, the potential for data-adaptive innovation in IoV applications becomes an outstanding development in future IoV. Therefore, this paper aims to focus on big data in IoV and to provide an analysis of the current state of research.\n\n\nDesign/methodology/approach\nThis review paper uses a systematic literature review methodology. It conducts a thorough search of academic databases to identify relevant scientific articles. By reviewing and analyzing the primary articles found in the big data in the IoV domain, 45 research articles from 2019 to 2023 were selected for detailed analysis.\n\n\nFindings\nThis paper discovers the main applications, use cases and primary contexts considered for big data in IoV. Next, it documents challenges, opportunities, future research directions and open issues.\n\n\nResearch limitations/implications\nThis paper is based on academic articles published from 2019 to 2023. Therefore, scientific outputs published before 2019 are omitted.\n\n\nOriginality/value\nThis paper provides a thorough analysis of big data in IoV and considers distinct research questions corresponding to big data challenges and opportunities in IoV. It also provides valuable insights for researchers and practitioners in evolving this field by examining the existing fields and future directions for big data in the IoV ecosystem.\n","PeriodicalId":43952,"journal":{"name":"International Journal of Pervasive Computing and Communications","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pervasive Computing and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijpcc-09-2023-0250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Big data challenges and opportunities on the Internet of Vehicles (IoV) have emerged as a transformative paradigm to change intelligent transportation systems. With the growth of data-driven applications and the advances in data analysis techniques, the potential for data-adaptive innovation in IoV applications becomes an outstanding development in future IoV. Therefore, this paper aims to focus on big data in IoV and to provide an analysis of the current state of research.
Design/methodology/approach
This review paper uses a systematic literature review methodology. It conducts a thorough search of academic databases to identify relevant scientific articles. By reviewing and analyzing the primary articles found in the big data in the IoV domain, 45 research articles from 2019 to 2023 were selected for detailed analysis.
Findings
This paper discovers the main applications, use cases and primary contexts considered for big data in IoV. Next, it documents challenges, opportunities, future research directions and open issues.
Research limitations/implications
This paper is based on academic articles published from 2019 to 2023. Therefore, scientific outputs published before 2019 are omitted.
Originality/value
This paper provides a thorough analysis of big data in IoV and considers distinct research questions corresponding to big data challenges and opportunities in IoV. It also provides valuable insights for researchers and practitioners in evolving this field by examining the existing fields and future directions for big data in the IoV ecosystem.