Permeability Prediction Using Advanced Magnetic Resonance Tools and Hydraulic Reservoir Units Techniques for the Pliocene Sand Reservoirs, Sapphire Offshore Gas Field, Mediterranean, Egypt
Ahmed Baghdadi, Abdullah El-Sayed, Abdel-Kahlek El-Werr, Ali Farag
{"title":"Permeability Prediction Using Advanced Magnetic Resonance Tools and Hydraulic Reservoir Units Techniques for the Pliocene Sand Reservoirs, Sapphire Offshore Gas Field, Mediterranean, Egypt","authors":"Ahmed Baghdadi, Abdullah El-Sayed, Abdel-Kahlek El-Werr, Ali Farag","doi":"10.46717/igj.57.1b.6ms-2024-2-15","DOIUrl":null,"url":null,"abstract":"Permeability derived from magnetic resonance advanced logging tools was used to unlock the Pliocene sandstone reservoir heterogeneity. Permeability prediction from well logs is a significant target due to the unavailability of core data. The hydraulic flow unit approach is used to classify the reservoir rocks according to their porosity-permeability relationship. The predicted permeability is calculated using Sapphire-Dh magnetic resonance porosity and permeability relationship for each flow unit. Flow Zone Indicator and the quality flow unit have a direct proportion relationship. For the model's verification, the predicted permeability is plotted against the measured resonance permeability in Sapphire-Dh as a reference studied well, showing highly matching results. Accordingly, the applied approach is implemented in the other three wells, which have neither core samples nor advanced logs measurements.","PeriodicalId":14847,"journal":{"name":"Iraqi Geological Journal","volume":"103 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iraqi Geological Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46717/igj.57.1b.6ms-2024-2-15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Permeability derived from magnetic resonance advanced logging tools was used to unlock the Pliocene sandstone reservoir heterogeneity. Permeability prediction from well logs is a significant target due to the unavailability of core data. The hydraulic flow unit approach is used to classify the reservoir rocks according to their porosity-permeability relationship. The predicted permeability is calculated using Sapphire-Dh magnetic resonance porosity and permeability relationship for each flow unit. Flow Zone Indicator and the quality flow unit have a direct proportion relationship. For the model's verification, the predicted permeability is plotted against the measured resonance permeability in Sapphire-Dh as a reference studied well, showing highly matching results. Accordingly, the applied approach is implemented in the other three wells, which have neither core samples nor advanced logs measurements.