Sentiment Analysis of Code-Mixed Text: A Comprehensive Review

Anne Perera, Amitha Caldera
{"title":"Sentiment Analysis of Code-Mixed Text: A Comprehensive Review","authors":"Anne Perera, Amitha Caldera","doi":"10.3897/jucs.98708","DOIUrl":null,"url":null,"abstract":"Sentiment Analysis is the task of identifying and extracting the opinion expressed in a text to determine the writer's perception of an entity. Due to globalization, people often mix two or more languages and use phonetic typing and lexical borrowing in web communication. This concept is known as code-mixing. Although extracting the opinion of text written in monolingual languages is simple and straightforward, Sentiment Analysis of code-mixed text is challenging. Classifiers fail within the context of the code-mixed text as text may consist of creative writing, spelling variations, grammatical errors, and different word orders. Hence, SA of code-mixed text is an interesting, challenging, and popular research area. This paper presents the state-of-the-art in Sentiment Analysis of code-mixed text by discussing each concept in detail. The paper also discusses the focused areas, techniques used, limitations, and performances of the studies related to code-mixing.","PeriodicalId":14652,"journal":{"name":"J. Univers. Comput. Sci.","volume":"67 2","pages":"242-261"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Univers. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3897/jucs.98708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sentiment Analysis is the task of identifying and extracting the opinion expressed in a text to determine the writer's perception of an entity. Due to globalization, people often mix two or more languages and use phonetic typing and lexical borrowing in web communication. This concept is known as code-mixing. Although extracting the opinion of text written in monolingual languages is simple and straightforward, Sentiment Analysis of code-mixed text is challenging. Classifiers fail within the context of the code-mixed text as text may consist of creative writing, spelling variations, grammatical errors, and different word orders. Hence, SA of code-mixed text is an interesting, challenging, and popular research area. This paper presents the state-of-the-art in Sentiment Analysis of code-mixed text by discussing each concept in detail. The paper also discusses the focused areas, techniques used, limitations, and performances of the studies related to code-mixing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
代码混合文本的情感分析:综合评述
情感分析是指识别和提取文本中表达的观点,以确定作者对某一实体的看法。由于全球化,人们经常在网络交流中混合使用两种或两种以上的语言,并使用拼音输入和词汇借用。这一概念被称为代码混合。虽然提取用单语撰写的文本的观点既简单又直接,但对代码混合文本进行情感分析却极具挑战性。由于文本可能包含创意写作、拼写错误、语法错误和不同的词序,分类器在代码混合文本的语境中会失效。因此,代码混合文本的 SA 是一个有趣、具有挑战性的热门研究领域。本文通过详细讨论每个概念,介绍了代码混合文本情感分析的最新进展。本文还讨论了与代码混合相关研究的重点领域、使用的技术、局限性和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sentiment Analysis of Code-Mixed Text: A Comprehensive Review Mobile Handoff with 6LoWPAN Neighbour Discovery Auxiliary Communication A Proposal of Naturalistic Software Development Method Recommendation of Machine Learning Techniques for Software Effort Estimation using Multi-Criteria Decision Making Transfer Learning with EfficientNetV2S for Automatic Face Shape Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1