Research and Analysis of IndoBERT Hyperparameter Tuning in Fake News Detection

Anugerah Simanjuntak, Rosni Lumbantoruan, Kartika Sianipar, Rut Gultom, Mario Simaremare, Samuel Situmeang, Erwin Panggabean
{"title":"Research and Analysis of IndoBERT Hyperparameter Tuning in Fake News Detection","authors":"Anugerah Simanjuntak, Rosni Lumbantoruan, Kartika Sianipar, Rut Gultom, Mario Simaremare, Samuel Situmeang, Erwin Panggabean","doi":"10.22146/jnteti.v13i1.8532","DOIUrl":null,"url":null,"abstract":"The rapid advancement of communication technology has transformed how information is shared, but it has also brought concerns about the proliferation of false information. A recent report by the Ministry of Communication and Informatics in Indonesia revealed that around 800,000 websites were involved in spreading false information, underscoring the seriousness of the problem. To combat this issue, researchers have focused on developing techniques to detect and combat fake news. This research centers on using IndoBERT-base-p1 for fake news detection and aims to enhance its performance through three methods to tune the hyperparameter value of the model namely: Bayesian optimization, grid search, and random search. After comparing the outcomes of the three hyperparameter tuning methods, Bayesian Optimization emerged as the most effective approach. Achieving a precision of 88.79%, recall of 94.5%, and F1-score of 91.56% for the “fake” label, Bayesian Optimization outperformed the other hyperparameter tuning methods as well as the model using the fine-tuning hyperparameter value. These findings emphasize the importance of hyperparameter tuning in improving the accuracy of fake news detection models. Utilizing Bayesian Optimization and optimizing the specified hyperparameters, the model demonstrated superior performance in accurately identifying instances of fake news, providing a valuable tool in the ongoing battle against disinformation in the digital realm.","PeriodicalId":31477,"journal":{"name":"Jurnal Nasional Teknik Elektro dan Teknologi Informasi","volume":"22 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Nasional Teknik Elektro dan Teknologi Informasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/jnteti.v13i1.8532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid advancement of communication technology has transformed how information is shared, but it has also brought concerns about the proliferation of false information. A recent report by the Ministry of Communication and Informatics in Indonesia revealed that around 800,000 websites were involved in spreading false information, underscoring the seriousness of the problem. To combat this issue, researchers have focused on developing techniques to detect and combat fake news. This research centers on using IndoBERT-base-p1 for fake news detection and aims to enhance its performance through three methods to tune the hyperparameter value of the model namely: Bayesian optimization, grid search, and random search. After comparing the outcomes of the three hyperparameter tuning methods, Bayesian Optimization emerged as the most effective approach. Achieving a precision of 88.79%, recall of 94.5%, and F1-score of 91.56% for the “fake” label, Bayesian Optimization outperformed the other hyperparameter tuning methods as well as the model using the fine-tuning hyperparameter value. These findings emphasize the importance of hyperparameter tuning in improving the accuracy of fake news detection models. Utilizing Bayesian Optimization and optimizing the specified hyperparameters, the model demonstrated superior performance in accurately identifying instances of fake news, providing a valuable tool in the ongoing battle against disinformation in the digital realm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
假新闻检测中的 IndoBERT 超参数调整研究与分析
通信技术的飞速发展改变了信息共享的方式,但也带来了对虚假信息泛滥的担忧。印度尼西亚通信和信息部最近的一份报告显示,约有 80 万个网站参与传播虚假信息,这凸显了问题的严重性。为解决这一问题,研究人员重点开发了检测和打击假新闻的技术。本研究主要使用 IndoBERT-base-p1 进行假新闻检测,旨在通过三种方法(即贝叶斯优化法、网格搜索法)调整模型的超参数值来提高其性能:贝叶斯优化、网格搜索和随机搜索。在比较了三种超参数调整方法的结果后,贝叶斯优化法成为最有效的方法。对于 "假 "标签,贝叶斯优化法的精确度为 88.79%,召回率为 94.5%,F1 分数为 91.56%,优于其他超参数调整方法以及使用微调超参数值的模型。这些发现强调了超参数调整在提高假新闻检测模型准确性方面的重要性。利用贝叶斯优化和优化指定的超参数,该模型在准确识别假新闻实例方面表现出了卓越的性能,为正在进行的打击数字领域虚假信息的斗争提供了宝贵的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 weeks
期刊最新文献
Citra Tekstur Terbaik Untuk Gaussian Naïve Bayes Dengan Interpolasi Nearest Neighbor Research and Analysis of IndoBERT Hyperparameter Tuning in Fake News Detection Implementation of QR Code Attendance Security System Using RSA and Hash Algorithms Fog Computing-Based System for Decentralized Smart Parking System by Using Firebase Pemantauan dan Pengendalian Parameter Greenhouse Berbasis IoT Dengan Protokol MQTT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1