Idi Souley Tangam, Roland Yonaba, Dial Niang, Mahaman Moustapha Adamou, Amadou Keïta, H. Karambiri
{"title":"Daily Simulation of the Rainfall–Runoff Relationship in the Sirba River Basin in West Africa: Insights from the HEC-HMS Model","authors":"Idi Souley Tangam, Roland Yonaba, Dial Niang, Mahaman Moustapha Adamou, Amadou Keïta, H. Karambiri","doi":"10.3390/hydrology11030034","DOIUrl":null,"url":null,"abstract":"This study focuses on the Sirba River Basin (SRB), a transboundary West African catchment of 38,950 km2 shared by Burkina Faso and Niger, which contributes to flooding downstream in Niamey (Niger). The study uses the HEC-HMS hydrological model to explore the dynamics of the daily rainfall–runoff relationship over the period 2006–2020. The model is calibrated using observed rainfall at 13 meteorological stations within the river basin and observed discharges at the Garbey Kourou hydrometric station outlet. Two types of simulation are compared: (i) a continuous simulation (CS) over the period 2006–2020 and (ii) an event-based simulation (ES) using selected major flood events in 2010, 2012, 2013, 2015 and 2020. The results showed satisfactory model performance under both modeling schemes (R2 = 0.84–0.87 for CS and R2 = 0.94–0.98 for ES), with a superior performance of ES over CS. Also, significant differences in the distribution of calibrated model parameters for the percent impervious and the attenuation flood wave factor were observed. A sensitivity analysis revealed that the curve number, initial abstraction, lag time and routing time factors were influential on the model outputs. The study therefore underscores the model’s robustness and contributes crucial insights for flood control management and infrastructure planning in the SRB.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/hydrology11030034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study focuses on the Sirba River Basin (SRB), a transboundary West African catchment of 38,950 km2 shared by Burkina Faso and Niger, which contributes to flooding downstream in Niamey (Niger). The study uses the HEC-HMS hydrological model to explore the dynamics of the daily rainfall–runoff relationship over the period 2006–2020. The model is calibrated using observed rainfall at 13 meteorological stations within the river basin and observed discharges at the Garbey Kourou hydrometric station outlet. Two types of simulation are compared: (i) a continuous simulation (CS) over the period 2006–2020 and (ii) an event-based simulation (ES) using selected major flood events in 2010, 2012, 2013, 2015 and 2020. The results showed satisfactory model performance under both modeling schemes (R2 = 0.84–0.87 for CS and R2 = 0.94–0.98 for ES), with a superior performance of ES over CS. Also, significant differences in the distribution of calibrated model parameters for the percent impervious and the attenuation flood wave factor were observed. A sensitivity analysis revealed that the curve number, initial abstraction, lag time and routing time factors were influential on the model outputs. The study therefore underscores the model’s robustness and contributes crucial insights for flood control management and infrastructure planning in the SRB.
HydrologyEarth and Planetary Sciences-Earth-Surface Processes
CiteScore
4.90
自引率
21.90%
发文量
192
审稿时长
6 weeks
期刊介绍:
Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences, including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology, hydrogeology and hydrogeophysics. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, ecohydrology, geomorphology, soil science, instrumentation and remote sensing, data and information sciences, civil and environmental engineering are within scope. Social science perspectives on hydrological problems such as resource and ecological economics, sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site. Studies focused on urban hydrological issues are included.