{"title":"A comprehensive survey of low-carbon planning and operation of electricity, hydrogen fuel, and transportation networks","authors":"Yeao Zhou, Sheng Chen, Jiayu Chen","doi":"10.1049/esi2.12139","DOIUrl":null,"url":null,"abstract":"<p>The trend of global energy systems towards carbon neutrality has led to an escalating interdependency between electricity, hydrogen fuel, and transportation networks. However, the means of surmounting the many challenges confronting the optimal coupling and coordination of electric power, hydrogen fuel, and transportation systems are not sufficiently understood to guide modern infrastructure planning operations. The present work addresses this issue by surveying the extant literature, relevant government policies, and future development trends to evaluate the present state of technology available for coordinating these systems and then determine the most pressing issues that remain to be addressed to facilitate future trends. On the one hand, the users of transportation networks represent flexible consumers of electric power and hydrogen fuel for those connected via devices such as electric vehicles and hydrogen fuel cell vehicles through charging stations and hydrogen refuelling stations. On the other hand, power grids can mitigate the negative effect of random charging behaviours on grid security through time-of-use electricity pricing, while excess renewable energy outputs can be applied to generate hydrogen fuel. The findings of this overview offer support for infrastructure planning and operations. Finally, the most urgent issues requiring further research are summarised.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12139","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Energy Systems Integration","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/esi2.12139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The trend of global energy systems towards carbon neutrality has led to an escalating interdependency between electricity, hydrogen fuel, and transportation networks. However, the means of surmounting the many challenges confronting the optimal coupling and coordination of electric power, hydrogen fuel, and transportation systems are not sufficiently understood to guide modern infrastructure planning operations. The present work addresses this issue by surveying the extant literature, relevant government policies, and future development trends to evaluate the present state of technology available for coordinating these systems and then determine the most pressing issues that remain to be addressed to facilitate future trends. On the one hand, the users of transportation networks represent flexible consumers of electric power and hydrogen fuel for those connected via devices such as electric vehicles and hydrogen fuel cell vehicles through charging stations and hydrogen refuelling stations. On the other hand, power grids can mitigate the negative effect of random charging behaviours on grid security through time-of-use electricity pricing, while excess renewable energy outputs can be applied to generate hydrogen fuel. The findings of this overview offer support for infrastructure planning and operations. Finally, the most urgent issues requiring further research are summarised.