首页 > 最新文献

IET Energy Systems Integration最新文献

英文 中文
A reinforcement learning method for two-layer shipboard real-time energy management considering battery state estimation 考虑电池状态估计的双层舰载实时能源管理强化学习方法
IF 1.6 Q4 ENERGY & FUELS Pub Date : 2024-07-02 DOI: 10.1049/esi2.12157
Huayue Zhang, Shuli Wen, Mingchang Gu, Miao Zhu, Huili Ye

Increasing global environmental concerns encourage a continuous reduction in carbon emissions from the shipping industry. It has become an irreversible trend to replace traditional fossil fuels with advanced energy storage technology. However, an improper energy management leads to not only energy waste but also undesired costs and emissions. Accordingly, the authors develop a two-layer shipboard energy management framework. In the initial stage, a shipboard navigation planning problem is formulated that considers battery state estimation and is subsequently solved using particle swarm optimisation to obtain an optimal speed trajectory. To track the scheduled speed, a reinforcement learning method based on a deep Q-Network is proposed in the second stage to realise real-time energy management of the diesel generator and energy storage system. This approach ensures that the state of charge remains within a safe range and that the performance is improved, avoiding excessive discharge from the energy storage systems and further enhancing the efficiency. The numerical results demonstrate the necessity and effectiveness of the proposed method.

全球对环境的日益关注促使航运业不断减少碳排放。用先进的储能技术取代传统化石燃料已成为不可逆转的趋势。然而,不恰当的能源管理不仅会导致能源浪费,还会产生不必要的成本和排放。因此,作者开发了一个双层船上能源管理框架。在初始阶段,提出了一个考虑电池状态估算的船载导航规划问题,随后使用粒子群优化法进行求解,以获得最佳速度轨迹。为了跟踪预定速度,第二阶段提出了一种基于深度 Q 网络的强化学习方法,以实现柴油发电机和储能系统的实时能量管理。这种方法可确保充电状态保持在安全范围内,并提高性能,避免储能系统过度放电,进一步提高效率。数值结果证明了所提方法的必要性和有效性。
{"title":"A reinforcement learning method for two-layer shipboard real-time energy management considering battery state estimation","authors":"Huayue Zhang,&nbsp;Shuli Wen,&nbsp;Mingchang Gu,&nbsp;Miao Zhu,&nbsp;Huili Ye","doi":"10.1049/esi2.12157","DOIUrl":"10.1049/esi2.12157","url":null,"abstract":"<p>Increasing global environmental concerns encourage a continuous reduction in carbon emissions from the shipping industry. It has become an irreversible trend to replace traditional fossil fuels with advanced energy storage technology. However, an improper energy management leads to not only energy waste but also undesired costs and emissions. Accordingly, the authors develop a two-layer shipboard energy management framework. In the initial stage, a shipboard navigation planning problem is formulated that considers battery state estimation and is subsequently solved using particle swarm optimisation to obtain an optimal speed trajectory. To track the scheduled speed, a reinforcement learning method based on a deep Q-Network is proposed in the second stage to realise real-time energy management of the diesel generator and energy storage system. This approach ensures that the state of charge remains within a safe range and that the performance is improved, avoiding excessive discharge from the energy storage systems and further enhancing the efficiency. The numerical results demonstrate the necessity and effectiveness of the proposed method.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":"6 3","pages":"333-343"},"PeriodicalIF":1.6,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12157","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141686149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Guest Editorial: Identification, stability analysis, control, and situation awareness of power systems with high penetrations of renewable energy resources 特邀社论:可再生能源高渗透率电力系统的识别、稳定性分析、控制和态势感知
IF 2.4 Q4 ENERGY & FUELS Pub Date : 2024-06-09 DOI: 10.1049/esi2.12153
Tek Tjing Lie, Wenpeng Luan

It is with great pleasure that the authors introduce this special issue, commemorating the 8th Asia Conference on Power and Electrical Engineering held in Tianjin in 2023. This conference served as a nexus for researchers, practitioners, and industry experts from around the globe to convene and exchange cutting-edge insights, innovative ideas, and transformative advancements in the field of power and electrical engineering. The contributions featured in this special issue represent a diverse array of research endeavours, spanning from fundamental theories to practical applications, all aimed at addressing the myriad challenges and opportunities facing the power and electrical engineering domain. From novel methodologies in renewable energy integration to advancements in smart grid technologies, each article encapsulates the spirit of innovation and collaboration that characterised the conference. This special issue includes scientific investigations on topology modelling and virtual stability analysis methods for distribution networks with high penetration of renewable energy resources, monitoring and situation awareness on grid inertia and power-frequency evolution, novel voltage source converter control schemes, and reviews of low-carbon planning and operation of electricity, hydrogen fuel, and transportation networks.

作者非常高兴地介绍本特刊,以纪念 2023 年在天津举行的第八届亚洲电力与电气工程会议。本次会议为来自全球各地的研究人员、从业人员和行业专家提供了一个汇聚一堂的平台,共同交流电力与电气工程领域的前沿见解、创新思想和变革性进展。本特刊收录的论文代表了从基础理论到实际应用的各种研究成果,其目的都是为了应对电力和电气工程领域所面临的无数挑战和机遇。从可再生能源集成的新方法到智能电网技术的进步,每篇文章都体现了会议的创新与合作精神。本特刊包括对可再生能源高渗透率配电网拓扑建模和虚拟稳定性分析方法的科学研究、电网惯性和功率频率演变的监测和情况感知、新型电压源变流器控制方案,以及电力、氢燃料和交通网络的低碳规划和运行的综述。
{"title":"Guest Editorial: Identification, stability analysis, control, and situation awareness of power systems with high penetrations of renewable energy resources","authors":"Tek Tjing Lie,&nbsp;Wenpeng Luan","doi":"10.1049/esi2.12153","DOIUrl":"https://doi.org/10.1049/esi2.12153","url":null,"abstract":"<p>It is with great pleasure that the authors introduce this special issue, commemorating the 8th Asia Conference on Power and Electrical Engineering held in Tianjin in 2023. This conference served as a nexus for researchers, practitioners, and industry experts from around the globe to convene and exchange cutting-edge insights, innovative ideas, and transformative advancements in the field of power and electrical engineering. The contributions featured in this special issue represent a diverse array of research endeavours, spanning from fundamental theories to practical applications, all aimed at addressing the myriad challenges and opportunities facing the power and electrical engineering domain. From novel methodologies in renewable energy integration to advancements in smart grid technologies, each article encapsulates the spirit of innovation and collaboration that characterised the conference. This special issue includes scientific investigations on topology modelling and virtual stability analysis methods for distribution networks with high penetration of renewable energy resources, monitoring and situation awareness on grid inertia and power-frequency evolution, novel voltage source converter control schemes, and reviews of low-carbon planning and operation of electricity, hydrogen fuel, and transportation networks.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":"6 2","pages":"87-88"},"PeriodicalIF":2.4,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12153","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141424932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transient overvoltage suppression of LCC-HVDC sending-end system based on DC current control optimisation 基于直流电流控制优化的 LCC-HVDC 送端系统瞬态过电压抑制
IF 2.4 Q4 ENERGY & FUELS Pub Date : 2024-05-09 DOI: 10.1049/esi2.12150
Yang Wang, Jianhang Zhu, Yingbiao Li, Jiabing Hu, Shicong Ma, Tiezhu Wang

The receiving-end system AC fault of the line-commutated-converter-based high voltage direct current (LCC-HVDC) will lead to commutation failure of the inverter side. During the fault and its recovery, AC transient low voltage and transient overvoltage (TOV) will occur in the sending-end system. The TOV has the risk of triggering the disorderly off-grid of the nearby renewable power generations. Besides, in a serious situation, it will threaten the power system to maintain a secure and steady operation. Therefore, the authors analyse the mechanism involved in the AC transient voltage during the AC fault and the recovery period first. It reveals that the key factor causing the TOV of the sending-end system is the setting of the DC current reference value. Then, a DC current reference value limit method based on the AC TOV sampling value is proposed, which is used to accelerate DC current recovery and suppress the TOV of the sending-end system. Finally, the effectiveness of the designed control method has been confirmed through electromagnetic transient simulations using the CIGRE HVDC benchmark model and a ±800 kV HVDC transmission system model situated in Northwest China.

基于线路换向变流器的高压直流(LCC-HVDC)的接收端系统交流故障将导致变流器侧的换向故障。在故障及其恢复期间,发送端系统将出现交流暂态低电压和暂态过电压(TOV)。瞬态过电压有可能引发附近可再生能源发电的无序离网。此外,严重时还会威胁到电力系统的安全稳定运行。因此,作者首先分析了交流故障和恢复期间交流暂态电压的相关机理。结果表明,导致送端系统失压的关键因素是直流电流参考值的设置。然后,提出了一种基于交流 TOV 采样值的直流电流参考值限制方法,用于加速直流电流恢复和抑制发送端系统的 TOV。最后,通过使用 CIGRE 高压直流基准模型和位于中国西北地区的±800 千伏高压直流输电系统模型进行电磁暂态仿真,证实了所设计控制方法的有效性。
{"title":"Transient overvoltage suppression of LCC-HVDC sending-end system based on DC current control optimisation","authors":"Yang Wang,&nbsp;Jianhang Zhu,&nbsp;Yingbiao Li,&nbsp;Jiabing Hu,&nbsp;Shicong Ma,&nbsp;Tiezhu Wang","doi":"10.1049/esi2.12150","DOIUrl":"10.1049/esi2.12150","url":null,"abstract":"<p>The receiving-end system AC fault of the line-commutated-converter-based high voltage direct current (LCC-HVDC) will lead to commutation failure of the inverter side. During the fault and its recovery, AC transient low voltage and transient overvoltage (TOV) will occur in the sending-end system. The TOV has the risk of triggering the disorderly off-grid of the nearby renewable power generations. Besides, in a serious situation, it will threaten the power system to maintain a secure and steady operation. Therefore, the authors analyse the mechanism involved in the AC transient voltage during the AC fault and the recovery period first. It reveals that the key factor causing the TOV of the sending-end system is the setting of the DC current reference value. Then, a DC current reference value limit method based on the AC TOV sampling value is proposed, which is used to accelerate DC current recovery and suppress the TOV of the sending-end system. Finally, the effectiveness of the designed control method has been confirmed through electromagnetic transient simulations using the CIGRE HVDC benchmark model and a ±800 kV HVDC transmission system model situated in Northwest China.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":"6 2","pages":"182-195"},"PeriodicalIF":2.4,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12150","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140996973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theoretical study on Stark effect of Rydberg atom in super low frequency electric field measurement 超低频电场测量中雷德贝格原子的斯塔克效应理论研究
IF 2.4 Q4 ENERGY & FUELS Pub Date : 2024-04-14 DOI: 10.1049/esi2.12149
Hongtian Song, Yong Xiao, Shanshan Hu, Dongping Xiao, BaoShuai Wang, Zhuxin Shi, Huaiqing Zhang

Super low frequency electric field measurements are crucial in analysing electromagnetic compatibility, assessing equipment status, and other related fields. Rydberg atom-based super low frequency electric field measurements are performed by observing the Stark shift in the spectrum of the Rydberg state. In a specific range of field strength (E < Eavoid, where Eavoid is the threshold to avoid crossing electric fields), the Rydberg atomic spectrum experiences a quadratic frequency shift in relation to the field strength, with the coefficient being determined by the atomic polarisability α. The authors establish a dynamic equation for the interaction between the external electric field and the atomic system, and present the Stark structure diagram of the Caesium Rydberg atom. The mathematical formulae for α and Eavoid in different Rydberg states are also obtained: α = A × (n*)6 + B × (n*)7 and Eavoid = C/(n*)5 + D/(n*)7, where A(B) = 2.2503 × 10−9(7.49,948 × 10−11) and C(D) = 1.68,868 × 108(2.45,991 × 109). The error of α and Eavoid compared with the experimental values does not exceed 8% and is even lower in the low Rydberg states. Accurately calculating the values of α and Eavoid is crucial in incorporating the Rydberg atom quantum coherence effect into super low frequency electric field measurements in new power systems.

超低频电场测量对于分析电磁兼容性、评估设备状态和其他相关领域至关重要。基于雷德贝格原子的超低频电场测量是通过观察雷德贝格态光谱中的斯塔克偏移来进行的。在特定的电场强度范围内(E < Eavoid,其中 Eavoid 是避免跨越电场的阈值),雷德贝格原子光谱会发生与电场强度相关的二次频移,其系数由原子极性 α 决定。作者建立了外部电场与原子系统之间相互作用的动态方程,并展示了铯雷德贝格原子的斯塔克结构图。同时还得到了不同雷德贝格态下 α 和 Eavoid 的数学公式:α = A × (n*)6 + B × (n*)7 和 Eavoid = C/(n*)5 + D/(n*)7, 其中 A(B) = 2.2503 × 10-9(7.49,948 × 10-11) 和 C(D) = 1.68,868 × 108(2.45,991 × 109)。与实验值相比,α 和 Eavoid 的误差不超过 8%,在低雷德贝格态甚至更低。准确计算 α 和 Eavoid 值对于将雷德贝格原子量子相干效应纳入新型电力系统的超低频电场测量至关重要。
{"title":"Theoretical study on Stark effect of Rydberg atom in super low frequency electric field measurement","authors":"Hongtian Song,&nbsp;Yong Xiao,&nbsp;Shanshan Hu,&nbsp;Dongping Xiao,&nbsp;BaoShuai Wang,&nbsp;Zhuxin Shi,&nbsp;Huaiqing Zhang","doi":"10.1049/esi2.12149","DOIUrl":"10.1049/esi2.12149","url":null,"abstract":"<p>Super low frequency electric field measurements are crucial in analysing electromagnetic compatibility, assessing equipment status, and other related fields. Rydberg atom-based super low frequency electric field measurements are performed by observing the Stark shift in the spectrum of the Rydberg state. In a specific range of field strength (<i>E</i> &lt; <i>E</i><sub>avoid</sub>, where <i>E</i><sub>avoid</sub> is the threshold to avoid crossing electric fields), the Rydberg atomic spectrum experiences a quadratic frequency shift in relation to the field strength, with the coefficient being determined by the atomic polarisability <i>α</i>. The authors establish a dynamic equation for the interaction between the external electric field and the atomic system, and present the Stark structure diagram of the Caesium Rydberg atom. The mathematical formulae for <i>α</i> and <i>E</i><sub>avoid</sub> in different Rydberg states are also obtained: <i>α</i> = A × (<i>n</i>*)<sup>6</sup> + B × (<i>n</i>*)<sup>7</sup> and <i>E</i><sub>avoid</sub> = C/(<i>n</i>*)<sup>5</sup> + D/(<i>n</i>*)<sup>7</sup>, where A(B) = 2.2503 × 10<sup>−9</sup>(7.49,948 × 10<sup>−11</sup>) and C(<i>D</i>) = 1.68,868 × 10<sup>8</sup>(2.45,991 × 10<sup>9</sup>). The error of <i>α</i> and <i>E</i><sub>avoid</sub> compared with the experimental values does not exceed 8% and is even lower in the low Rydberg states. Accurately calculating the values of <i>α</i> and <i>E</i><sub>avoid</sub> is crucial in incorporating the Rydberg atom quantum coherence effect into super low frequency electric field measurements in new power systems.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":"6 2","pages":"174-181"},"PeriodicalIF":2.4,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12149","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140706066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Guest Editorial: Dynamic analysis, control, and situation awareness of power systems with high penetrations of power electronic converters 特邀社论:电力电子变流器高渗透率电力系统的动态分析、控制和态势感知
IF 2.4 Q4 ENERGY & FUELS Pub Date : 2024-03-30 DOI: 10.1049/esi2.12146
Jiebei Zhu, Huadong Sun, Yongning Chi, Xiaorong Xie, Jiabing Hu, Haoran Zhao, Siqi Bu, Yan Xu, Fei Teng, Qiteng Hong, Leijiao Ge
<p>In recent decades, global power grids have evolved with a rapid and extensive development of power electronic converters (PEC), including renewable energy systems (RES), high-voltage DC (HVDC) transmission, flexible AC transmission system (FACTS), energy storages, and microgrids. <span>The distinct characteristics of power electronic devices</span> <span>traditional synchronous generators, especially their rapid control speed, wide-band performance and lack of inertia response and spinning reserve, are altering grid dynamics, and inducing new stability challenges</span>. Continuation of such trends could further exacerbate the risk to the stability of power grids because of factors such as low inertias, lack of spinning reserve to quickly nullify active power mismatch between demand and supply.</p><p>Therefore, scientific investigations on novel dynamic modelling and stability analysis methods, data-driven monitoring and situation awareness on grid inertia-power-frequency evolution, grid dynamic frequency forecast methodologies in consideration of novel PEC control schemes, and advanced PEC grid integration control schemes to minimise frequency management risks become increasingly crucial for the secured operations of power systems with high PEC penetrations. In this Special Issue, namely ‘Dynamic Analysis, Control, and Situation Awareness of Power Systems with High Penetrations of Power Electronic Converters’, we have presented eight original papers of sufficient quality and innovation. The 10 eventually accepted papers can be clustered into three two categories, namely novel control design, stability and fault analysis.</p><p>Zhu et al. present a supercapacitor-based coordinated synthetic inertia (SCSI) scheme for a voltage source converter-based HVDC (VSC-HVDC) integrated offshore wind farm (OWF). The proposed SCSI allows the OWF to provide a designated inertial response to an onshore grid. The results show that the proposed SCSI scheme can provide required inertial support from WTG-installed supercapacitors to the onshore grid through the VSC-HVDC link, significantly improving the onshore frequency stability (https://doi.org/10.1049/esi2.12137).</p><p>Ghamari et al. design a Lyapunov-based adaptive backstepping control approach for a power Buck converter, as an advanced version of the Backstepping method utilising Lyapunov stability function to reach a higher stability and a better disturbance rejection behaviour in the practical applications. In addition, to compensate for disturbances with wider ranges such as supply voltage variation, parametric variation and noise, this paper applies a metaheuristic algorithm in the control scheme called grey wolf optimisation algorithm of a nature-inspired algorithm with faster decision-making dynamics along with more accuracy over different optimisation algorithms (https://doi.org/10.1049/esi2.12098).</p><p>Arunagiri et al. present a new technique based on active damped dual loop <i>αβ</i>-frame curr
近几十年来,全球电网随着电力电子变流器(PEC)的快速和广泛发展而不断演进,包括可再生能源系统(RES)、高压直流输电(HVDC)、柔性交流输电系统(FACTS)、储能和微电网。电力电子设备传统同步发电机的显著特点,尤其是其快速控制速度、宽带性能以及缺乏惯性响应和旋转储备,正在改变电网动态,并带来新的稳定性挑战。因此,对新型动态建模和稳定性分析方法、电网惯性-功率-频率演变的数据驱动监测和态势感知、考虑新型 PEC 控制方案的电网动态频率预测方法,以及将频率管理风险降至最低的先进 PEC 电网集成控制方案进行科学研究,对于 PEC 渗透率较高的电力系统的安全运行日益重要。在本期特刊 "电力电子变流器高渗透率电力系统的动态分析、控制和态势感知 "中,我们介绍了 8 篇具有足够质量和创新性的原创论文。最终录用的 10 篇论文可分为三类,即新型控制设计、稳定性和故障分析。Zhu 等人针对基于电压源变流器的高压直流(VSC-HVDC)集成海上风电场(OWF)提出了一种基于超级电容器的协调合成惯性(SCSI)方案。拟议的 SCSI 允许海上风电场向陆上电网提供指定的惯性响应。结果表明,所提出的 SCSI 方案可以通过 VSC-HVDC 链路从风电机组安装的超级电容器向陆上电网提供所需的惯性支持,从而显著提高陆上频率稳定性 (https://doi.org/10.1049/esi2.12137)。Ghamari 等人为功率降压转换器设计了一种基于 Lyapunov 的自适应反步进控制方法,该方法是利用 Lyapunov 稳定函数的反步进方法的高级版本,可在实际应用中实现更高的稳定性和更好的干扰抑制性能。此外,为了补偿范围更广的干扰,如电源电压变化、参数变化和噪声,本文在控制方案中应用了一种称为灰狼优化算法的元启发算法,这是一种自然启发算法,与不同的优化算法相比,具有更快的决策动态和更高的精度(https://doi.org/10.1049/esi2.12098)。Arunagiri 等人提出了一种基于主动阻尼双环 αβ 帧电流控制器的新技术,用于控制带有 LCL 滤波器的 DSTATCOM,以实现更好的负载补偿。通过在内环使用电容器电流,在外环使用与谐波补偿器(HC)并联的比例谐振(PR)调节器和电网电流,增强了双环控制器。在静止的 αβ 参考框架下,所提出的方法能有效抑制谐振峰:PR控制器可在基频上提供无限增益,而HC则可在特定谐波频率上提供更多增益(https://doi.org/10.1049/esi2.12088)。Sun等人提出了一种智能配电网(SDN)分布式优化调度方法,并考虑了具有多个组网点的综合能源微电网(IEMG),提高了SDN运行的灵活性,增加了所有实体的运行效益。首先,设计了一种 IEMG 连接模式,即每个 IEMG 可连接 SDN 的多个节点。提出了一种分布式优化调度方法,通过这种方法可以考虑 IEMG 运行隐私和 SDN 消耗可再生能源电力的责任。然后,以并网线路上的电能作为耦合变量,建立了 IEMG 和 SDN 协调调度模型 (https://doi.org/10.1049/esi2.12089)。Zhang 等人利用电力矩分析方法研究了并网变流器在不同控制模式下的直流侧稳定性。研究发现,在恒定有功功率控制模式下,系统稳定性主要与直流网络动态相对应。相反,在恒定直流侧电压控制模式下,并网变流器不存在稳定性问题。一般来说,提高直流链路电容或降低下垂增益可大大提高 VSC-HVDC 链路的稳定裕度储备。此外,经典 PQ 控制器的控制增益被证明对直流侧系统稳定性的影响有限 (https://doi.org/10.1049/esi2.12110)。Liu et al. 介绍了同步和虚拟同步发电机微电网的小信号建模和分析。为了明确揭示所有频段的振荡模式,首先开发了一个高保真全阶状态空间模型,确定了电网虚拟同步发电机电压控制器与同步发电机 q 轴阻尼绕组之间的相互作用所产生的潜在失稳亚同步振荡模式。然后,在全阶模型的基础上简化了一个专用于低频振荡评估的增强型准稳态模型,从而在系统建模的准确性和简便性之间做出了合理权衡 (https://doi.org/10.1049/esi2.12099)。Chen 等人提出了一种基于实例的电力系统动态安全评估方法,并对机器学习模型进行了解释,通过对高重要性特征分配扰动,开发出有效的对抗性攻击及其缓解对策。然后,利用这些生成的对抗实例进行对抗训练和缓解。所提出的方法的优点是减少了模型精度和鲁棒性之间的权衡变化以及所使用的对抗范例的数量,可以清楚地说明模型精度和鲁棒性之间的相关性,为决策提供相当大的帮助(https://doi.org/10.1049/esi2.12118)。Xian 等人提出了一种具有动态开关拓扑结构的改进系统结构和相应的控制方案,以提高双馈感应发电机系统的故障穿越能力。基于定子串联阻抗能有效降低转子侧过电流的机理分析,该方法首先设计了一种动态开关拓扑结构。然后,该方法允许转子侧变流器利用有功磁通衰减来有效降低转子侧的过电流,并利用无功功率支持来加速电压恢复。事实证明,该方案能在不同电压骤降情况下动态调整拓扑结构和控制方案 (https://doi.org/10.1049/esi2.12097)。本特刊所选的所有论文都强调了新型控制设计和稳定性分析在技术上的重要性,以确保未来电力电子化电网的灵活安全运行。
{"title":"Guest Editorial: Dynamic analysis, control, and situation awareness of power systems with high penetrations of power electronic converters","authors":"Jiebei Zhu,&nbsp;Huadong Sun,&nbsp;Yongning Chi,&nbsp;Xiaorong Xie,&nbsp;Jiabing Hu,&nbsp;Haoran Zhao,&nbsp;Siqi Bu,&nbsp;Yan Xu,&nbsp;Fei Teng,&nbsp;Qiteng Hong,&nbsp;Leijiao Ge","doi":"10.1049/esi2.12146","DOIUrl":"https://doi.org/10.1049/esi2.12146","url":null,"abstract":"&lt;p&gt;In recent decades, global power grids have evolved with a rapid and extensive development of power electronic converters (PEC), including renewable energy systems (RES), high-voltage DC (HVDC) transmission, flexible AC transmission system (FACTS), energy storages, and microgrids. &lt;span&gt;The distinct characteristics of power electronic devices&lt;/span&gt; &lt;span&gt;traditional synchronous generators, especially their rapid control speed, wide-band performance and lack of inertia response and spinning reserve, are altering grid dynamics, and inducing new stability challenges&lt;/span&gt;. Continuation of such trends could further exacerbate the risk to the stability of power grids because of factors such as low inertias, lack of spinning reserve to quickly nullify active power mismatch between demand and supply.&lt;/p&gt;&lt;p&gt;Therefore, scientific investigations on novel dynamic modelling and stability analysis methods, data-driven monitoring and situation awareness on grid inertia-power-frequency evolution, grid dynamic frequency forecast methodologies in consideration of novel PEC control schemes, and advanced PEC grid integration control schemes to minimise frequency management risks become increasingly crucial for the secured operations of power systems with high PEC penetrations. In this Special Issue, namely ‘Dynamic Analysis, Control, and Situation Awareness of Power Systems with High Penetrations of Power Electronic Converters’, we have presented eight original papers of sufficient quality and innovation. The 10 eventually accepted papers can be clustered into three two categories, namely novel control design, stability and fault analysis.&lt;/p&gt;&lt;p&gt;Zhu et al. present a supercapacitor-based coordinated synthetic inertia (SCSI) scheme for a voltage source converter-based HVDC (VSC-HVDC) integrated offshore wind farm (OWF). The proposed SCSI allows the OWF to provide a designated inertial response to an onshore grid. The results show that the proposed SCSI scheme can provide required inertial support from WTG-installed supercapacitors to the onshore grid through the VSC-HVDC link, significantly improving the onshore frequency stability (https://doi.org/10.1049/esi2.12137).&lt;/p&gt;&lt;p&gt;Ghamari et al. design a Lyapunov-based adaptive backstepping control approach for a power Buck converter, as an advanced version of the Backstepping method utilising Lyapunov stability function to reach a higher stability and a better disturbance rejection behaviour in the practical applications. In addition, to compensate for disturbances with wider ranges such as supply voltage variation, parametric variation and noise, this paper applies a metaheuristic algorithm in the control scheme called grey wolf optimisation algorithm of a nature-inspired algorithm with faster decision-making dynamics along with more accuracy over different optimisation algorithms (https://doi.org/10.1049/esi2.12098).&lt;/p&gt;&lt;p&gt;Arunagiri et al. present a new technique based on active damped dual loop &lt;i&gt;αβ&lt;/i&gt;-frame curr","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":"6 1","pages":"1-4"},"PeriodicalIF":2.4,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12146","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140331161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved topology identification for distribution network with relatively balanced power supplies 改进具有相对平衡电源的配电网络拓扑识别
IF 2.4 Q4 ENERGY & FUELS Pub Date : 2024-03-15 DOI: 10.1049/esi2.12142
Wenpeng Luan, Da Xu, Bo Liu, Wenqian Jiang, Li Feng, Wenbin Liu

Having correct distribution network topology information is essential for system state estimation, line loss analysis, electricity theft detection and fault location. At present, with continuous deployment of smart sensors, a large amount of monitoring data is collected, which enables refined management for distribution network. A data-driven low voltage (LV) distribution network topology identification method is proposed, which realises transformer-customer pairing and customer phase identification for distribution network with relatively balanced power supplies. Firstly, an integrated similarity coefficient of voltage curve is proposed, which can reflect the neighbourhood relationship within stations while increase the distinction between stations; the K-Nearest Neighbour (KNN) algorithm is used to propagate the service transformer labels to complete transformer-customer association. Then, the influence of power fluctuation on voltage curve is analysed and a dynamic sliding window model is adopted to search for voltage segments with significantly difference among three phase feeders to formulate a voltage time series to identify customer phase. Finally, the results are corrected and verified based on the principle of network power balance. The proposed algorithm is tested in two different real substations in China and Europe and shows high accuracy and robustness especially in distribution network with relatively balanced power supplies.

掌握正确的配电网络拓扑信息对于系统状态估计、线损分析、窃电检测和故障定位至关重要。目前,随着智能传感器的不断部署,大量监测数据被收集起来,实现了配电网的精细化管理。本文提出了一种数据驱动的低压配电网拓扑识别方法,实现了供电相对平衡的配电网的变压器-客户配对和客户相位识别。首先,提出了电压曲线的综合相似系数,既能反映站内的邻近关系,又能增加站与站之间的区别;利用 K-Nearest Neighbour(KNN)算法传播服务变压器标签,完成变压器与客户的关联。然后,分析电力波动对电压曲线的影响,并采用动态滑动窗口模型搜索三相馈线间差异显著的电压段,形成电压时间序列以识别客户相位。最后,根据网络功率平衡原理对结果进行修正和验证。所提出的算法在中国和欧洲的两个不同的实际变电站中进行了测试,显示出较高的准确性和鲁棒性,尤其是在供电相对平衡的配电网络中。
{"title":"Improved topology identification for distribution network with relatively balanced power supplies","authors":"Wenpeng Luan,&nbsp;Da Xu,&nbsp;Bo Liu,&nbsp;Wenqian Jiang,&nbsp;Li Feng,&nbsp;Wenbin Liu","doi":"10.1049/esi2.12142","DOIUrl":"10.1049/esi2.12142","url":null,"abstract":"<p>Having correct distribution network topology information is essential for system state estimation, line loss analysis, electricity theft detection and fault location. At present, with continuous deployment of smart sensors, a large amount of monitoring data is collected, which enables refined management for distribution network. A data-driven low voltage (LV) distribution network topology identification method is proposed, which realises transformer-customer pairing and customer phase identification for distribution network with relatively balanced power supplies. Firstly, an integrated similarity coefficient of voltage curve is proposed, which can reflect the neighbourhood relationship within stations while increase the distinction between stations; the K-Nearest Neighbour (KNN) algorithm is used to propagate the service transformer labels to complete transformer-customer association. Then, the influence of power fluctuation on voltage curve is analysed and a dynamic sliding window model is adopted to search for voltage segments with significantly difference among three phase feeders to formulate a voltage time series to identify customer phase. Finally, the results are corrected and verified based on the principle of network power balance. The proposed algorithm is tested in two different real substations in China and Europe and shows high accuracy and robustness especially in distribution network with relatively balanced power supplies.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":"6 2","pages":"162-173"},"PeriodicalIF":2.4,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12142","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140237557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interval analysis of the small-signal stability of grid-connected voltage-source converter system considering multiparameter uncertainty 考虑多参数不确定性的并网电压源变流器系统小信号稳定性区间分析
IF 2.4 Q4 ENERGY & FUELS Pub Date : 2024-03-08 DOI: 10.1049/esi2.12141
Fuxin Ouyang, Zhenguo Shao, Changxu Jiang, Yan Zhang, Feixiong Chen

Grid-connected voltage source converters (VSCs) have been broadly applied in modern power system. However, instability issues may be triggered by the integration of grid-connected VSCs, jeopardising the operation of the power grid. Conventional stability analysis methods can be utilised to derive system stability margins under nominal conditions. Whereas grid-connected VSCs inevitably operate under multiparameter uncertainty, which may result in overly optimistic or even incorrect estimations of stability margins, thereby posing potential risks to system operation. To address this issue, an interval small-signal stability analysis approach is proposed to investigate the system stability under multiparameter uncertainty. First, the interval state-space model of the grid-connected VSC system is constructed based on interval symbolic linearisation. Furthermore, the interval eigenvalue decomposition is introduced to calculate the interval eigenvalue distribution of the interval state-space model. Eventually, the upper bounds of the real part of the dominant interval eigenvalues are utilised for deriving interval stable parameter regions. Results of Monte Carlo analysis and time-domain simulations of the grid-connected VSC system are utilised to verify the effectiveness of the proposed interval stability analysis method.

并网电压源转换器(VSC)已广泛应用于现代电力系统。然而,并网电压源转换器可能会引发不稳定问题,从而危及电网的运行。传统的稳定性分析方法可用于推导额定条件下的系统稳定裕度。而并网可变电压调节器不可避免地会在多参数不确定的情况下运行,这可能会导致对稳定裕度的估计过于乐观甚至错误,从而给系统运行带来潜在风险。针对这一问题,本文提出了一种区间小信号稳定性分析方法来研究多参数不确定性下的系统稳定性。首先,基于区间符号线性化构建了并网 VSC 系统的区间状态空间模型。此外,引入区间特征值分解来计算区间状态空间模型的区间特征值分布。最后,利用主要区间特征值实部的上界推导出区间稳定参数区域。利用蒙特卡罗分析和并网 VSC 系统的时域仿真结果,验证了所提出的区间稳定性分析方法的有效性。
{"title":"Interval analysis of the small-signal stability of grid-connected voltage-source converter system considering multiparameter uncertainty","authors":"Fuxin Ouyang,&nbsp;Zhenguo Shao,&nbsp;Changxu Jiang,&nbsp;Yan Zhang,&nbsp;Feixiong Chen","doi":"10.1049/esi2.12141","DOIUrl":"https://doi.org/10.1049/esi2.12141","url":null,"abstract":"<p>Grid-connected voltage source converters (VSCs) have been broadly applied in modern power system. However, instability issues may be triggered by the integration of grid-connected VSCs, jeopardising the operation of the power grid. Conventional stability analysis methods can be utilised to derive system stability margins under nominal conditions. Whereas grid-connected VSCs inevitably operate under multiparameter uncertainty, which may result in overly optimistic or even incorrect estimations of stability margins, thereby posing potential risks to system operation. To address this issue, an interval small-signal stability analysis approach is proposed to investigate the system stability under multiparameter uncertainty. First, the interval state-space model of the grid-connected VSC system is constructed based on interval symbolic linearisation. Furthermore, the interval eigenvalue decomposition is introduced to calculate the interval eigenvalue distribution of the interval state-space model. Eventually, the upper bounds of the real part of the dominant interval eigenvalues are utilised for deriving interval stable parameter regions. Results of Monte Carlo analysis and time-domain simulations of the grid-connected VSC system are utilised to verify the effectiveness of the proposed interval stability analysis method.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":"6 2","pages":"144-161"},"PeriodicalIF":2.4,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12141","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141424867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive survey of low-carbon planning and operation of electricity, hydrogen fuel, and transportation networks 电力、氢燃料和交通网络的低碳规划与运营综合调查
IF 2.4 Q4 ENERGY & FUELS Pub Date : 2024-02-26 DOI: 10.1049/esi2.12139
Yeao Zhou, Sheng Chen, Jiayu Chen

The trend of global energy systems towards carbon neutrality has led to an escalating interdependency between electricity, hydrogen fuel, and transportation networks. However, the means of surmounting the many challenges confronting the optimal coupling and coordination of electric power, hydrogen fuel, and transportation systems are not sufficiently understood to guide modern infrastructure planning operations. The present work addresses this issue by surveying the extant literature, relevant government policies, and future development trends to evaluate the present state of technology available for coordinating these systems and then determine the most pressing issues that remain to be addressed to facilitate future trends. On the one hand, the users of transportation networks represent flexible consumers of electric power and hydrogen fuel for those connected via devices such as electric vehicles and hydrogen fuel cell vehicles through charging stations and hydrogen refuelling stations. On the other hand, power grids can mitigate the negative effect of random charging behaviours on grid security through time-of-use electricity pricing, while excess renewable energy outputs can be applied to generate hydrogen fuel. The findings of this overview offer support for infrastructure planning and operations. Finally, the most urgent issues requiring further research are summarised.

全球能源系统实现碳中和的趋势导致电力、氢燃料和运输网络之间的相互依赖不断升级。然而,对于如何克服电力、氢燃料和交通系统之间的最佳耦合与协调所面临的诸多挑战,还没有足够的认识来指导现代基础设施的规划运营。针对这一问题,本研究通过对现有文献、相关政府政策和未来发展趋势的调查,评估了协调这些系统的现有技术现状,然后确定了促进未来发展趋势仍需解决的最紧迫问题。一方面,交通网络的用户是电力和氢燃料的灵活消费者,他们通过充电站和加氢站等设备连接电动汽车和氢燃料电池汽车。另一方面,电网可通过分时电价减轻随机充电行为对电网安全的负面影响,而多余的可再生能源输出可用于生产氢燃料。本综述的结论为基础设施规划和运营提供了支持。最后,总结了需要进一步研究的最紧迫问题。
{"title":"A comprehensive survey of low-carbon planning and operation of electricity, hydrogen fuel, and transportation networks","authors":"Yeao Zhou,&nbsp;Sheng Chen,&nbsp;Jiayu Chen","doi":"10.1049/esi2.12139","DOIUrl":"10.1049/esi2.12139","url":null,"abstract":"<p>The trend of global energy systems towards carbon neutrality has led to an escalating interdependency between electricity, hydrogen fuel, and transportation networks. However, the means of surmounting the many challenges confronting the optimal coupling and coordination of electric power, hydrogen fuel, and transportation systems are not sufficiently understood to guide modern infrastructure planning operations. The present work addresses this issue by surveying the extant literature, relevant government policies, and future development trends to evaluate the present state of technology available for coordinating these systems and then determine the most pressing issues that remain to be addressed to facilitate future trends. On the one hand, the users of transportation networks represent flexible consumers of electric power and hydrogen fuel for those connected via devices such as electric vehicles and hydrogen fuel cell vehicles through charging stations and hydrogen refuelling stations. On the other hand, power grids can mitigate the negative effect of random charging behaviours on grid security through time-of-use electricity pricing, while excess renewable energy outputs can be applied to generate hydrogen fuel. The findings of this overview offer support for infrastructure planning and operations. Finally, the most urgent issues requiring further research are summarised.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":"6 2","pages":"89-103"},"PeriodicalIF":2.4,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12139","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140428193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Supercapacitor-based coordinated synthetic inertia scheme for voltage source converter-based HVDC integrated offshore wind farm 基于超级电容器的协调合成惯性方案,用于基于电压源变流器的 HVDC 集成海上风电场
IF 2.4 Q4 ENERGY & FUELS Pub Date : 2024-02-07 DOI: 10.1049/esi2.12137
Jiebei Zhu, Meiqi Shi, Lujie Yu, Junbo Zhao, Siqi Bu, Chi Yung Chung, Campbell D. Booth

A supercapacitor-based coordinated synthetic inertia (SCSI) scheme for a voltage source converter-based HVDC (VSC-HVDC)-integrated offshore wind farm (OWF) is proposed. The proposed SCSI allows the OWF to provide a designated inertial response to an onshore grid. Under the SCSI scheme, a supercapacitor is added to the DC side of each wind turbine generator via a bidirectional DC/DC converter, varying its voltage along with the offshore frequency to synthesise the desired inertial response. The HVDC grid side VSC employs a DC voltage/frequency droop control to convey the onshore frequency information to DC voltage without communication. Meanwhile, the wind farm side VSC regulates the offshore frequency to couple with the conveyed onshore frequency, considering voltage drop across the DC cables. An offshore frequency switching algorithm is incorporated to avoid undesired SCSI maloperation under offshore faults. The key parameters of the proposed SCSI are optimised through a small signal stability analysis. The effectiveness of the SCSI scheme is evaluated using a modified IEEE 39-bus test system. The results show that the proposed SCSI scheme can provide required inertial support from WTG-installed supercapacitors to the onshore grid through the VSC-HVDC link, significantly improving the onshore frequency stability.

针对基于电压源变流器的高压直流(VSC-HVDC)集成海上风电场(OWF),提出了一种基于超级电容器的协调合成惯性(SCSI)方案。拟议的 SCSI 允许海上风电场向陆上电网提供指定的惯性响应。在 SCSI 方案中,超级电容器通过双向 DC/DC 转换器被添加到每个风力涡轮发电机的直流侧,其电压随离岸频率变化,以合成所需的惯性响应。HVDC 电网侧 VSC 采用直流电压/频率下降控制,无需通信即可将陆上频率信息转换为直流电压。同时,考虑到直流电缆上的电压降,风电场侧可变电源调节器调节离岸频率,使其与传输的陆上频率耦合。此外,还采用了离岸频率切换算法,以避免在离岸故障情况下出现意外的 SCSI 误操作。通过小信号稳定性分析,对拟议 SCSI 的关键参数进行了优化。利用改进的 IEEE 39 总线测试系统对 SCSI 方案的有效性进行了评估。结果表明,建议的 SCSI 方案可通过 VSC-HVDC 链路从风电机组安装的超级电容器向陆上电网提供所需的惯性支持,从而显著改善陆上频率稳定性。
{"title":"Supercapacitor-based coordinated synthetic inertia scheme for voltage source converter-based HVDC integrated offshore wind farm","authors":"Jiebei Zhu,&nbsp;Meiqi Shi,&nbsp;Lujie Yu,&nbsp;Junbo Zhao,&nbsp;Siqi Bu,&nbsp;Chi Yung Chung,&nbsp;Campbell D. Booth","doi":"10.1049/esi2.12137","DOIUrl":"10.1049/esi2.12137","url":null,"abstract":"<p>A supercapacitor-based coordinated synthetic inertia (SCSI) scheme for a voltage source converter-based HVDC (VSC-HVDC)-integrated offshore wind farm (OWF) is proposed. The proposed SCSI allows the OWF to provide a designated inertial response to an onshore grid. Under the SCSI scheme, a supercapacitor is added to the DC side of each wind turbine generator via a bidirectional DC/DC converter, varying its voltage along with the offshore frequency to synthesise the desired inertial response. The HVDC grid side VSC employs a DC voltage/frequency droop control to convey the onshore frequency information to DC voltage without communication. Meanwhile, the wind farm side VSC regulates the offshore frequency to couple with the conveyed onshore frequency, considering voltage drop across the DC cables. An offshore frequency switching algorithm is incorporated to avoid undesired SCSI maloperation under offshore faults. The key parameters of the proposed SCSI are optimised through a small signal stability analysis. The effectiveness of the SCSI scheme is evaluated using a modified IEEE 39-bus test system. The results show that the proposed SCSI scheme can provide required inertial support from WTG-installed supercapacitors to the onshore grid through the VSC-HVDC link, significantly improving the onshore frequency stability.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":"6 1","pages":"5-17"},"PeriodicalIF":2.4,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12137","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139795356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intelligent reinforcement training optimisation of dispatch strategy for provincial power grids with multi-agent systems: Considering operational risks and backup availability 利用多智能体系统对省级电网的调度策略进行智能强化训练优化:考虑运行风险和备用可用性
IF 2.4 Q4 ENERGY & FUELS Pub Date : 2024-01-04 DOI: 10.1049/esi2.12131
Wenlong Shi, Xiao Han, Xinying Wang, Tianjiao Pu, Dongxia Zhang

In order to optimise resource allocation within the province, a two-stage scheduling model for provincial-level power grids, encompassing day-ahead and intra-day stages is proposed. Firstly, a Conditional Generative Adversarial Network is employed to generate scenarios for load and new energy output. Based on the generated scenario set, the model takes into account the uncertainty and permissible error intervals of new energy and load, utilising conditional value at risk to measure the system scheduling risk. In the day-ahead stage, an optimisation model is proposed, considering intra-provincial power purchase demands, with the goal of minimising system operating costs, including risk costs. It optimises day-ahead scheduling and contingency plans to ensure economic efficiency and robustness of the system based on extreme scenarios. During the training phase, the dataset is enhanced using Conditional Generative Adversarial Network and updated daily, improving the training effectiveness of the multi-agent proximal policy optimisation intra-day scheduling model. In the intra-day stage, the intra-day scheduling model utilises ultra-short-term forecasting data as input to generate contingency plans for dispatching reserve units. Experiments conducted on the IEEE 39-node system validate the feasibility and effectiveness of the proposed approach.

为了优化省内资源配置,提出了省级电网的两阶段调度模型,包括日前和日内阶段。首先,采用条件生成对抗网络生成负荷和新能源输出情景。根据生成的情景集,模型考虑了新能源和负荷的不确定性和允许误差区间,利用条件风险值来衡量系统调度风险。在日前阶段,考虑到省内购电需求,提出了一个优化模型,目标是最大限度地降低系统运营成本,包括风险成本。该模型对日前调度和应急计划进行优化,以确保系统在极端情况下的经济效益和稳健性。在训练阶段,使用条件生成对抗网络对数据集进行增强并每日更新,从而提高多代理近端策略优化日内调度模型的训练效果。在日内调度阶段,日内调度模型利用超短期预测数据作为输入,生成调度备用机组的应急计划。在 IEEE 39 节点系统上进行的实验验证了建议方法的可行性和有效性。
{"title":"Intelligent reinforcement training optimisation of dispatch strategy for provincial power grids with multi-agent systems: Considering operational risks and backup availability","authors":"Wenlong Shi,&nbsp;Xiao Han,&nbsp;Xinying Wang,&nbsp;Tianjiao Pu,&nbsp;Dongxia Zhang","doi":"10.1049/esi2.12131","DOIUrl":"10.1049/esi2.12131","url":null,"abstract":"<p>In order to optimise resource allocation within the province, a two-stage scheduling model for provincial-level power grids, encompassing day-ahead and intra-day stages is proposed. Firstly, a Conditional Generative Adversarial Network is employed to generate scenarios for load and new energy output. Based on the generated scenario set, the model takes into account the uncertainty and permissible error intervals of new energy and load, utilising conditional value at risk to measure the system scheduling risk. In the day-ahead stage, an optimisation model is proposed, considering intra-provincial power purchase demands, with the goal of minimising system operating costs, including risk costs. It optimises day-ahead scheduling and contingency plans to ensure economic efficiency and robustness of the system based on extreme scenarios. During the training phase, the dataset is enhanced using Conditional Generative Adversarial Network and updated daily, improving the training effectiveness of the multi-agent proximal policy optimisation intra-day scheduling model. In the intra-day stage, the intra-day scheduling model utilises ultra-short-term forecasting data as input to generate contingency plans for dispatching reserve units. Experiments conducted on the IEEE 39-node system validate the feasibility and effectiveness of the proposed approach.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":"6 2","pages":"129-143"},"PeriodicalIF":2.4,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12131","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139384524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IET Energy Systems Integration
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1