Ferroelectrically tunable topological phase transition in In2Se3 thin films

IF 3.2 2区 物理与天体物理 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Physical Review B Pub Date : 2024-02-26 DOI:10.1103/PhysRevB.109.085432
Zhiqiang Tian, Ziming Zhu, Jiang Zeng, Chao-Fei Liu, Yurong Yang, Anlian Pan, Mingxing Chen
{"title":"Ferroelectrically tunable topological phase transition in In2Se3 thin films","authors":"Zhiqiang Tian, Ziming Zhu, Jiang Zeng, Chao-Fei Liu, Yurong Yang, Anlian Pan, Mingxing Chen","doi":"10.1103/PhysRevB.109.085432","DOIUrl":null,"url":null,"abstract":"Materials with ferroelectrically switchable topological properties are of interest for both fundamental physics and practical applications. Using first-principles calculations, we find that stacking ferroelectric $\\alpha$-In$_2$Se$_3$ monolayers into a bilayer leads to polarization-dependent band structures, which yields polarization-dependent topological properties. Specifically, we find that the states with interlayer ferroelectric couplings are quantum spin Hall insulators, while those with antiferroelectric polarizations are normal insulators. We further find that In$_2$Se$_3$ trilayer and quadlayer exhibit nontrivial band topology as long as in the structure the ferroelectric In$_2$Se$_3$ bilayer is antiferroelectrically coupled to In$_2$Se$_3$ monolayers or other ferroelectric In$_2$Se$_3$ bilayer. Otherwise the system is topologically trivial. The reason is that near the Fermi level the band structure of the ferroelectric In$_2$Se$_3$ bilayer has to be maintained for the nontrivial band topology. This feature can be used to design nontrivial band topology for the thicker films by a proper combination of the interlayer polarization couplings. The topological properties can be ferroelectrically tunable using the dipole locking effect. Our study reveals switchable band topology in a family of natural ferroelectrics, which provide a platform for designing new functional devices.","PeriodicalId":48701,"journal":{"name":"Physical Review B","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevB.109.085432","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Materials with ferroelectrically switchable topological properties are of interest for both fundamental physics and practical applications. Using first-principles calculations, we find that stacking ferroelectric $\alpha$-In$_2$Se$_3$ monolayers into a bilayer leads to polarization-dependent band structures, which yields polarization-dependent topological properties. Specifically, we find that the states with interlayer ferroelectric couplings are quantum spin Hall insulators, while those with antiferroelectric polarizations are normal insulators. We further find that In$_2$Se$_3$ trilayer and quadlayer exhibit nontrivial band topology as long as in the structure the ferroelectric In$_2$Se$_3$ bilayer is antiferroelectrically coupled to In$_2$Se$_3$ monolayers or other ferroelectric In$_2$Se$_3$ bilayer. Otherwise the system is topologically trivial. The reason is that near the Fermi level the band structure of the ferroelectric In$_2$Se$_3$ bilayer has to be maintained for the nontrivial band topology. This feature can be used to design nontrivial band topology for the thicker films by a proper combination of the interlayer polarization couplings. The topological properties can be ferroelectrically tunable using the dipole locking effect. Our study reveals switchable band topology in a family of natural ferroelectrics, which provide a platform for designing new functional devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In2Se3 薄膜中的铁电可调拓扑相变
具有铁电可切换拓扑特性的材料对基础物理学和实际应用都很有意义。通过第一性原理计算,我们发现将铁电$\alpha$-In$_2$Se$_3$单层堆叠成双层会产生极化依赖性能带结构,从而产生极化依赖性拓扑特性。具体来说,我们发现具有层间铁电耦合的态是量子自旋霍尔绝缘体,而具有反铁电极化的态则是正常绝缘体。我们进一步发现,只要在结构上铁电 In$_2$Se$_3$ 双层与 In$_2$Se$_3$ 单层或其他铁电 In$_2$Se$_3$ 双层反铁电耦合,In$_2$Se$_3$ 三层和四层就会表现出非三维带拓扑结构。否则,该系统在拓扑上是微不足道的。原因是在费米水平附近,铁电 In$_2$Se$_3$ 双层的带状结构必须保持非三维带状拓扑结构。通过适当组合层间极化耦合,可以利用这一特点为更厚的薄膜设计非三重带拓扑结构。拓扑特性可利用偶极锁定效应进行铁电调谐。我们的研究揭示了一系列天然铁电体的可切换带拓扑结构,为设计新型功能器件提供了一个平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Review B
Physical Review B PHYSICS, CONDENSED MATTER-
CiteScore
6.30
自引率
32.40%
发文量
4177
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
期刊最新文献
Operator growth hypothesis in open quantum systems Ferroelectrically tunable topological phase transition in In2Se3 thin films Interacting Kitaev chain with N=1 supersymmetry Radiation-based wave-packet generator in one-dimensional lattices Surface scattering amplitude for a spatially dispersive model dielectric
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1