MaglevMotor: Design and optimisation of a novel hybrid linear actuator for 6 degrees of freedom rail-passive Maglev carrier

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-02-26 DOI:10.1049/elp2.12424
Ahmet Fevzi Bozkurt, Kadir Erkan
{"title":"MaglevMotor: Design and optimisation of a novel hybrid linear actuator for 6 degrees of freedom rail-passive Maglev carrier","authors":"Ahmet Fevzi Bozkurt,&nbsp;Kadir Erkan","doi":"10.1049/elp2.12424","DOIUrl":null,"url":null,"abstract":"<p>A novel levitating hybrid linear actuator is proposed for magnetically levitated carrier systems. This hybrid linear actuator, “MaglevMotor”, is capable to levitate itself under the passive rail and thrusts itself in a single longitudinal direction. The proposed structure aims to reduce complexity by minimising the necessary number of components, resulting in simplified geometry, improved assembly convenience, and decreased manufacturing tolerances. The MaglevMotor is optimised in multi-physics aspect. Optimisation objectives are maximising thrust force, minimising total mass and minimising mechanical deformation of yoke with constraints of a user defined magnetic flux density (B) in yoke and zero power condition for specific air gap value. The authors present pre-optimisation studies, optimisation results and final MaglevMotor designs step by step. By utilising three of the MaglevMotors units, the carrier is able to achieve motion in six degrees of freedom. The carrier's performance targets, including a 0.2 G acceleration, a total mass of less than 10 kg, and a 5 mm levitation air gap, have been both attained and validated through corresponding experiments.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.12424","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/elp2.12424","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A novel levitating hybrid linear actuator is proposed for magnetically levitated carrier systems. This hybrid linear actuator, “MaglevMotor”, is capable to levitate itself under the passive rail and thrusts itself in a single longitudinal direction. The proposed structure aims to reduce complexity by minimising the necessary number of components, resulting in simplified geometry, improved assembly convenience, and decreased manufacturing tolerances. The MaglevMotor is optimised in multi-physics aspect. Optimisation objectives are maximising thrust force, minimising total mass and minimising mechanical deformation of yoke with constraints of a user defined magnetic flux density (B) in yoke and zero power condition for specific air gap value. The authors present pre-optimisation studies, optimisation results and final MaglevMotor designs step by step. By utilising three of the MaglevMotors units, the carrier is able to achieve motion in six degrees of freedom. The carrier's performance targets, including a 0.2 G acceleration, a total mass of less than 10 kg, and a 5 mm levitation air gap, have been both attained and validated through corresponding experiments.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磁悬浮电机:设计和优化用于 6 自由度轨道无源磁悬浮载体的新型混合线性致动器
为磁悬浮运载系统提出了一种新型悬浮混合线性致动器。这种名为 "MaglevMotor "的混合线性致动器能够在被动轨道下悬浮,并在单一纵向方向上产生推力。所提出的结构旨在通过最大限度地减少必要的组件数量来降低复杂性,从而简化几何形状、提高装配便利性并降低制造公差。磁悬浮电机在多物理场方面进行了优化。优化目标是推力最大化、总质量最小化和磁轭机械变形最小化,其约束条件是磁轭中用户定义的磁通密度 (B) 和特定气隙值的零功率条件。作者逐步介绍了优化前研究、优化结果和磁悬浮电机的最终设计。通过利用三个磁悬浮电机单元,载体能够实现六个自由度的运动。载体的性能目标包括 0.2 G 的加速度、小于 10 千克的总质量和 5 毫米的悬浮气隙,这些目标已经实现,并通过相应的实验得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1