{"title":"MaglevMotor: Design and optimisation of a novel hybrid linear actuator for 6 degrees of freedom rail-passive Maglev carrier","authors":"Ahmet Fevzi Bozkurt, Kadir Erkan","doi":"10.1049/elp2.12424","DOIUrl":null,"url":null,"abstract":"<p>A novel levitating hybrid linear actuator is proposed for magnetically levitated carrier systems. This hybrid linear actuator, “MaglevMotor”, is capable to levitate itself under the passive rail and thrusts itself in a single longitudinal direction. The proposed structure aims to reduce complexity by minimising the necessary number of components, resulting in simplified geometry, improved assembly convenience, and decreased manufacturing tolerances. The MaglevMotor is optimised in multi-physics aspect. Optimisation objectives are maximising thrust force, minimising total mass and minimising mechanical deformation of yoke with constraints of a user defined magnetic flux density (B) in yoke and zero power condition for specific air gap value. The authors present pre-optimisation studies, optimisation results and final MaglevMotor designs step by step. By utilising three of the MaglevMotors units, the carrier is able to achieve motion in six degrees of freedom. The carrier's performance targets, including a 0.2 G acceleration, a total mass of less than 10 kg, and a 5 mm levitation air gap, have been both attained and validated through corresponding experiments.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.12424","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/elp2.12424","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A novel levitating hybrid linear actuator is proposed for magnetically levitated carrier systems. This hybrid linear actuator, “MaglevMotor”, is capable to levitate itself under the passive rail and thrusts itself in a single longitudinal direction. The proposed structure aims to reduce complexity by minimising the necessary number of components, resulting in simplified geometry, improved assembly convenience, and decreased manufacturing tolerances. The MaglevMotor is optimised in multi-physics aspect. Optimisation objectives are maximising thrust force, minimising total mass and minimising mechanical deformation of yoke with constraints of a user defined magnetic flux density (B) in yoke and zero power condition for specific air gap value. The authors present pre-optimisation studies, optimisation results and final MaglevMotor designs step by step. By utilising three of the MaglevMotors units, the carrier is able to achieve motion in six degrees of freedom. The carrier's performance targets, including a 0.2 G acceleration, a total mass of less than 10 kg, and a 5 mm levitation air gap, have been both attained and validated through corresponding experiments.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.