INTRUSION DETECTION MODEL BASED ON IMPROVED TRANSFORMER

Svitlana Gavrylenko, Vadym Poltoratskyi, Alina Nechyporenko
{"title":"INTRUSION DETECTION MODEL BASED ON IMPROVED TRANSFORMER","authors":"Svitlana Gavrylenko, Vadym Poltoratskyi, Alina Nechyporenko","doi":"10.20998/2522-9052.2024.1.12","DOIUrl":null,"url":null,"abstract":"The object of the study is the process of identifying the state of a computer network. The subject of the study are the methods of identifying the state of computer networks. The purpose of the paper is to improve the efficacy of intrusion detection in computer networks by developing a method based on transformer models. The results obtained. The work analyzes traditional machine learning algorithms, deep learning methods and considers the advantages of using transformer models. A method for detecting intrusions in computer networks is proposed. This method differs from known approaches by utilizing the Vision Transformer for Small-size Datasets (ViTSD) deep learning algorithm. The method incorporates procedures to reduce the correlation of input data and transform data into a specific format required for model operations. The developed methods are implemented using Python and the GOOGLE COLAB cloud service with Jupyter Notebook. Conclusions. Experiments confirmed the efficiency of the proposed method. The use of the developed method based on the ViTSD algorithm and the data preprocessing procedure increases the model's accuracy to 98.7%. This makes it possible to recommend it for practical use, in order to improve the accuracy of identifying the state of a computer system.","PeriodicalId":275587,"journal":{"name":"Advanced Information Systems","volume":"54 16","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20998/2522-9052.2024.1.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The object of the study is the process of identifying the state of a computer network. The subject of the study are the methods of identifying the state of computer networks. The purpose of the paper is to improve the efficacy of intrusion detection in computer networks by developing a method based on transformer models. The results obtained. The work analyzes traditional machine learning algorithms, deep learning methods and considers the advantages of using transformer models. A method for detecting intrusions in computer networks is proposed. This method differs from known approaches by utilizing the Vision Transformer for Small-size Datasets (ViTSD) deep learning algorithm. The method incorporates procedures to reduce the correlation of input data and transform data into a specific format required for model operations. The developed methods are implemented using Python and the GOOGLE COLAB cloud service with Jupyter Notebook. Conclusions. Experiments confirmed the efficiency of the proposed method. The use of the developed method based on the ViTSD algorithm and the data preprocessing procedure increases the model's accuracy to 98.7%. This makes it possible to recommend it for practical use, in order to improve the accuracy of identifying the state of a computer system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进变压器的入侵检测模型
研究对象是识别计算机网络状态的过程。研究对象是识别计算机网络状态的方法。本文的目的是通过开发一种基于变压器模型的方法来提高计算机网络入侵检测的功效。获得的结果该作品分析了传统机器学习算法、深度学习方法,并考虑了使用变压器模型的优势。提出了一种检测计算机网络入侵的方法。这种方法与已知的方法不同,它利用了小型数据集视觉变换器(ViTSD)深度学习算法。该方法包含减少输入数据相关性的程序,并将数据转换为模型操作所需的特定格式。开发的方法使用 Python 和带有 Jupyter Notebook 的谷歌 COLAB 云服务实现。结论实验证实了所提方法的效率。使用基于 ViTSD 算法和数据预处理程序开发的方法,可将模型的准确率提高到 98.7%。因此,建议将其用于实际应用,以提高识别计算机系统状态的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MEDOIDS AS A PACKING OF ORB IMAGE DESCRIPTORS THE METHOD OF RANKING EFFECTIVE PROJECT SOLUTIONS IN CONDITIONS OF INCOMPLETE CERTAINTY ENSURING THE FUNCTIONAL STABILITY OF THE INFORMATION SYSTEM OF THE POWER PLANT ON THE BASIS OF MONITORING THE PARAMETERS OF THE WORKING CONDITION OF COMPUTER DEVICES COMPARATIVE ANALYSIS OF SPECTRAL ANOMALIES DETECTION METHODS ON IMAGES FROM ON-BOARD REMOTE SENSING SYSTEMS FPGA-BASED IMPLEMENTATION OF A GAUSSIAN SMOOTHING FILTER WITH POWERS-OF-TWO COEFFICIENTS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1