Spatiotemporal trends and evapotranspiration estimation using an improvised SEBAL convergence method for the semi-arid region of Western Rajasthan, India

Dhruv Saxena, M. Choudhary, Gunwant Sharma
{"title":"Spatiotemporal trends and evapotranspiration estimation using an improvised SEBAL convergence method for the semi-arid region of Western Rajasthan, India","authors":"Dhruv Saxena, M. Choudhary, Gunwant Sharma","doi":"10.2166/aqua.2024.220","DOIUrl":null,"url":null,"abstract":"\n \n The study demonstrates how to estimate evapotranspiration (ET) for the Western Rajasthan region of India utilizing remotely sensed images with the Surface Energy Balance Algorithm for Land (SEBAL). Landsat 8 and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite inputs were used to compute seasonal and annual ET on the Google Earth Engine platform. The assessment utilizing the SEBAL algorithm, in combination with the Food and Agriculture Organization (FAO) Penman–Monteith (PM) and Hargreaves methods, demonstrates that SEBAL has adequate reliability for estimating ET for a spatially large extent in semi-arid regions when evaluated with the Hargreaves method. The values of R2, root-mean-square error (RMSE), and mean bias error (MBE) for FAO-PM were 0.63, 1.65 mm/day, and 1.28 mm/day, respectively. For the Hargreaves method, the values of R2, RMSE, and MBE were 0.96, 0.41 mm/day, and −0.31 mm/day, respectively. The study showed that the northern region witnessed the highest ET due to the availability of abundant surface water for irrigation. Overall, the results demonstrate the SEBAL model's effectiveness in estimating evapotranspiration. A downward trend in ET is observed in the region, mainly due to changing climatic conditions.","PeriodicalId":513288,"journal":{"name":"AQUA — Water Infrastructure, Ecosystems and Society","volume":"52 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AQUA — Water Infrastructure, Ecosystems and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/aqua.2024.220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The study demonstrates how to estimate evapotranspiration (ET) for the Western Rajasthan region of India utilizing remotely sensed images with the Surface Energy Balance Algorithm for Land (SEBAL). Landsat 8 and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite inputs were used to compute seasonal and annual ET on the Google Earth Engine platform. The assessment utilizing the SEBAL algorithm, in combination with the Food and Agriculture Organization (FAO) Penman–Monteith (PM) and Hargreaves methods, demonstrates that SEBAL has adequate reliability for estimating ET for a spatially large extent in semi-arid regions when evaluated with the Hargreaves method. The values of R2, root-mean-square error (RMSE), and mean bias error (MBE) for FAO-PM were 0.63, 1.65 mm/day, and 1.28 mm/day, respectively. For the Hargreaves method, the values of R2, RMSE, and MBE were 0.96, 0.41 mm/day, and −0.31 mm/day, respectively. The study showed that the northern region witnessed the highest ET due to the availability of abundant surface water for irrigation. Overall, the results demonstrate the SEBAL model's effectiveness in estimating evapotranspiration. A downward trend in ET is observed in the region, mainly due to changing climatic conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在印度拉贾斯坦邦西部半干旱地区使用简易 SEBAL 收敛法估算时空趋势和蒸散量
该研究展示了如何利用遥感图像和土地表面能量平衡算法(SEBAL)估算印度拉贾斯坦邦西部地区的蒸散量(ET)。在谷歌地球引擎平台上,利用 Landsat 8 和中分辨率成像分光仪(MODIS)卫星输入数据计算季节性和年度蒸散发。利用 SEBAL 算法并结合粮食及农业组织(FAO)的彭曼-蒙蒂思(PM)和哈格里夫斯方法进行的评估表明,在使用哈格里夫斯方法进行评估时,SEBAL 在估算半干旱地区大范围空间的蒸散发方面具有足够的可靠性。FAO-PM 方法的 R2 值、均方根误差 (RMSE) 值和平均偏差误差 (MBE) 值分别为 0.63、1.65 毫米/天和 1.28 毫米/天。哈格里夫斯方法的 R2、RMSE 和 MBE 值分别为 0.96、0.41 毫米/天和-0.31 毫米/天。研究结果表明,北部地区的蒸散发量最高,这是因为该地区有丰富的地表水用于灌溉。总体而言,研究结果证明了 SEBAL 模型在估算蒸散量方面的有效性。主要由于气候条件的变化,该地区的蒸散发呈下降趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Photocatalytic performance of TiO2 modified with graphene derivatives and Fe (Ⅲ) at different thermal reduction temperatures Why do people save water? A systematic review of household water consumption behaviour in times of water availability uncertainty The socio-technical short-term implications of drinking water hoarding on supply reliability Hydraulic investigation of flows at high-head overflow spillway with multiple aerators: a physical and numerical study of Mohmand Dam, Pakistan Water quality ensemble prediction model for the urban water reservoir based on the hybrid long short-term memory (LSTM) network analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1