Prediction of survival in out-of-hospital cardiac arrest: The updated SCARS Model

P. Sultanian, P. Lundgren, Antros Louca, Erik Andersson, Therese Djärv, Fredrik Hessulf, Anna Henningsson, A. Martinsson, P. Nordberg, Adam Piasecki, Vibha Gupta, Z. Mandalenakis, Amar Taha, Bengt Redfors, Johan Herlitz, A. Rawshani
{"title":"Prediction of survival in out-of-hospital cardiac arrest: The updated SCARS Model","authors":"P. Sultanian, P. Lundgren, Antros Louca, Erik Andersson, Therese Djärv, Fredrik Hessulf, Anna Henningsson, A. Martinsson, P. Nordberg, Adam Piasecki, Vibha Gupta, Z. Mandalenakis, Amar Taha, Bengt Redfors, Johan Herlitz, A. Rawshani","doi":"10.1093/ehjdh/ztae016","DOIUrl":null,"url":null,"abstract":"\n \n \n Out-of-hospital cardiac arrest (OHCA) is a major health concern worldwide. Although one third of all cases achieve return of spontaneous circulation (ROSC) and may undergo a difficult period in the ICU, only one in ten survive. This study aimed to improve our previously developed machine learning model for early prognostication of survival in OHCA.\n \n \n \n We studied all cases registered in the Swedish Cardiopulmonary Resuscitation Registry during 2010 and 2020 (n=55,615). We compared the predictive performance of extreme gradient boosting (XGB), LightGBM, logistic regression, CatBoost, random forest and TabNet. For each framework, we developed models that optimized (1) a weighted F1 score to penalize models that yielded more false negatives, and (2) PR AUC (precision recall area under the curve).\n \n \n \n LightGBM assigned higher importance values to a larger set of variables, while XGB made predictions using fewer predictors. The AUC ROC scores for LightGBM was 0.958 (optimized for weighted F1) and 0.961 (optimized for PR AUC), while for XGB, the scores were 0.958 and 0.960 respectively. The calibration plots showed subtle underestimation of survival for LightGBM, contrasting with a mild overestimation for XGB models. In the crucial range of 0 to 10% likelihood of survival, the XGB model, optimized with PR AUC, emerged as a clinically safe model.\n \n \n \n We improved our previous prediction model by creating a parsimonious model with AUC ROC at 0.96, with excellent calibration and no apparent risk of underestimating survival in the critical probability range (0-10%). The model is available at www.gocares.se.\n","PeriodicalId":508387,"journal":{"name":"European Heart Journal - Digital Health","volume":"40 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Heart Journal - Digital Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztae016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Out-of-hospital cardiac arrest (OHCA) is a major health concern worldwide. Although one third of all cases achieve return of spontaneous circulation (ROSC) and may undergo a difficult period in the ICU, only one in ten survive. This study aimed to improve our previously developed machine learning model for early prognostication of survival in OHCA. We studied all cases registered in the Swedish Cardiopulmonary Resuscitation Registry during 2010 and 2020 (n=55,615). We compared the predictive performance of extreme gradient boosting (XGB), LightGBM, logistic regression, CatBoost, random forest and TabNet. For each framework, we developed models that optimized (1) a weighted F1 score to penalize models that yielded more false negatives, and (2) PR AUC (precision recall area under the curve). LightGBM assigned higher importance values to a larger set of variables, while XGB made predictions using fewer predictors. The AUC ROC scores for LightGBM was 0.958 (optimized for weighted F1) and 0.961 (optimized for PR AUC), while for XGB, the scores were 0.958 and 0.960 respectively. The calibration plots showed subtle underestimation of survival for LightGBM, contrasting with a mild overestimation for XGB models. In the crucial range of 0 to 10% likelihood of survival, the XGB model, optimized with PR AUC, emerged as a clinically safe model. We improved our previous prediction model by creating a parsimonious model with AUC ROC at 0.96, with excellent calibration and no apparent risk of underestimating survival in the critical probability range (0-10%). The model is available at www.gocares.se.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测院外心脏骤停患者的存活率:最新的 SCARS 模型
院外心脏骤停(OHCA)是全球关注的一大健康问题。虽然三分之一的病例能恢复自主循环(ROSC),并可能在重症监护室度过一段艰难的时期,但只有十分之一的病例能存活下来。本研究旨在改进我们之前开发的机器学习模型,用于早期预测 OHCA 患者的存活率。 我们研究了 2010 年至 2020 年期间瑞典心肺复苏登记处登记的所有病例(n=55,615)。我们比较了极梯度提升(XGB)、LightGBM、逻辑回归、CatBoost、随机森林和 TabNet 的预测性能。对于每个框架,我们都开发了可优化以下两方面的模型:(1) 加权 F1 分数,以惩罚产生更多错误否定的模型;(2) PR AUC(曲线下的精确召回面积)。 LightGBM 为一组较大的变量分配了较高的重要性值,而 XGB 则使用较少的预测因子进行预测。LightGBM 的 AUC ROC 得分为 0.958(加权 F1 优化)和 0.961(PR AUC 优化),而 XGB 的得分分别为 0.958 和 0.960。校准图显示,LightGBM 模型的存活率有细微的低估,而 XGB 模型则有轻微的高估。在存活可能性为 0% 到 10% 的关键范围内,根据 PR AUC 进行优化的 XGB 模型成为临床上安全的模型。 我们改进了之前的预测模型,创建了一个 AUC ROC 为 0.96 的简易模型,校准效果极佳,在临界概率范围(0-10%)内没有明显低估生存率的风险。该模型可在 www.gocares.se 上查阅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting early-stage coronary artery disease using machine learning and routine clinical biomarkers improved by augmented virtual data Why Thorough Open Data Descriptions Matters More Than Ever in the Age of AI: Opportunities for Cardiovascular Research Meet Key Digital Health thought leaders: Jagmeet (Jag) Singh Machine learning-based prediction of 1-year all-cause mortality in patients undergoing CRT implantation: Validation of the SEMMELWEIS-CRT score in the European CRT Survey I dataset Effect of Urban Environment on Cardiovascular Health: A Feasibility Pilot Study using Machine Learning to Predict Heart Rate Variability in Heart Failure Patients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1