W. A. Aspar, M. H. Pradono, W. Barasa, S. P. Primadiyanti, L. S. Wibowo, Dwi Agus Purnomo, Emerelda I N S P J D S Pasadena
{"title":"Direct Analysis of a Steel Railway Bridge via Monitoring System of an Instrumented Structure","authors":"W. A. Aspar, M. H. Pradono, W. Barasa, S. P. Primadiyanti, L. S. Wibowo, Dwi Agus Purnomo, Emerelda I N S P J D S Pasadena","doi":"10.18517/ijaseit.14.1.19148","DOIUrl":null,"url":null,"abstract":"Railway infrastructure maintenance is essential in implementing the transportation system. Most of these railway bridges have suffered gradual deterioration over time. Predictive structural health monitoring (SHM) is required by installing instrumentation sensors on railway bridges to determine the condition of the railway bridge infrastructure at the site. This research aims to analyze and assess the existing condition of steel railway bridges to understand the load-deformation characteristics, bearing capacity, and dynamic response of the structure. This paper describes a valuable method for assessing the condition of steel railway bridges during operation. This paper presents a direct analysis of the steel railway bridge structure, with a span of 40.00 meters, a width of 4.40 meters, and a height of 6.60 meters. The steel structure railway bridge is modeled in 3D in detail, and numerical analysis is carried out using finite element analysis based on input parameters obtained from manual field measurements and instrumentation sensors. The expected result of the development of this SHM System is to know the performance of the steel railway bridge structure in real-time via the dashboard display. The results showed that the carrying capacity of the railway bridge was in a relatively safe condition. This case study may help practice engineers and researchers in future research. It can be a valuable reference for future research in developing and applying such a system to a typical case.","PeriodicalId":14471,"journal":{"name":"International Journal on Advanced Science, Engineering and Information Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Advanced Science, Engineering and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18517/ijaseit.14.1.19148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Railway infrastructure maintenance is essential in implementing the transportation system. Most of these railway bridges have suffered gradual deterioration over time. Predictive structural health monitoring (SHM) is required by installing instrumentation sensors on railway bridges to determine the condition of the railway bridge infrastructure at the site. This research aims to analyze and assess the existing condition of steel railway bridges to understand the load-deformation characteristics, bearing capacity, and dynamic response of the structure. This paper describes a valuable method for assessing the condition of steel railway bridges during operation. This paper presents a direct analysis of the steel railway bridge structure, with a span of 40.00 meters, a width of 4.40 meters, and a height of 6.60 meters. The steel structure railway bridge is modeled in 3D in detail, and numerical analysis is carried out using finite element analysis based on input parameters obtained from manual field measurements and instrumentation sensors. The expected result of the development of this SHM System is to know the performance of the steel railway bridge structure in real-time via the dashboard display. The results showed that the carrying capacity of the railway bridge was in a relatively safe condition. This case study may help practice engineers and researchers in future research. It can be a valuable reference for future research in developing and applying such a system to a typical case.
期刊介绍:
International Journal on Advanced Science, Engineering and Information Technology (IJASEIT) is an international peer-reviewed journal dedicated to interchange for the results of high quality research in all aspect of science, engineering and information technology. The journal publishes state-of-art papers in fundamental theory, experiments and simulation, as well as applications, with a systematic proposed method, sufficient review on previous works, expanded discussion and concise conclusion. As our commitment to the advancement of science and technology, the IJASEIT follows the open access policy that allows the published articles freely available online without any subscription. The journal scopes include (but not limited to) the followings: -Science: Bioscience & Biotechnology. Chemistry & Food Technology, Environmental, Health Science, Mathematics & Statistics, Applied Physics -Engineering: Architecture, Chemical & Process, Civil & structural, Electrical, Electronic & Systems, Geological & Mining Engineering, Mechanical & Materials -Information Science & Technology: Artificial Intelligence, Computer Science, E-Learning & Multimedia, Information System, Internet & Mobile Computing