A host-microbial metabolite interaction gut-on-a-chip model of the adult human intestine demonstrates beneficial effects upon inulin treatment of gut microbiome

J. Donkers, Maria Wiese, Tim J. van den Broek, E. Wierenga, Valeria Agamennone, F. Schuren, E. van de Steeg
{"title":"A host-microbial metabolite interaction gut-on-a-chip model of the adult human intestine demonstrates beneficial effects upon inulin treatment of gut microbiome","authors":"J. Donkers, Maria Wiese, Tim J. van den Broek, E. Wierenga, Valeria Agamennone, F. Schuren, E. van de Steeg","doi":"10.20517/mrr.2023.79","DOIUrl":null,"url":null,"abstract":"Background: The gut and its microbiome have a major impact on many aspects of health and are therefore also an attractive target for drug- or food-based therapies. Here, we report on the added value of combining a microbiome screening model, the i-screen, with fresh intestinal tissue explants in a microfluidic gut-on-a-chip model, the Intestinal Explant Barrier Chip (IEBC).\n Methods: Adult human gut microbiome (fecal pool of 6 healthy donors) was cultured anaerobically in the i-screen platform for 24 h, without and with exposure to 4 mg/mL inulin. The i-screen cell-free culture supernatant was subsequently applied to the luminal side of adult human colon tissue explants (n = 3 donors), fixed in the IEBC, for 24 h and effects were evaluated.\n Results: The supplementation of the media with inulin promoted the growth of Anaerostipes , Bifidobacterium , Blautia , and Collinsella in the in vitro i-screen, and triggered an elevated production of butyrate by the microbiota. Human colon tissue exposed to inulin-treated i-screen cell-free culture supernatant or control i-screen cell-free culture supernatant with added short-chain fatty acids (SCFAs) showed improved tissue barrier integrity measured by a 28.2%-34.2% reduction in FITC-dextran 4000 (FD4) leakage and 1.3 times lower transport of antipyrine. Furthermore, the release of pro-inflammatory cytokines IL-1β, IL-6, IL-8, and TNF-α was reduced under these circumstances. Gene expression profiles confirmed these findings, but showed more profound effects for inulin-treated supernatant compared to SCFA-supplemented supernatant.\n Conclusion: The combination of i-screen and IEBC facilitates the study of complex intestinal processes such as host-microbial metabolite interaction and gut health.","PeriodicalId":94376,"journal":{"name":"Microbiome research reports","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiome research reports","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.20517/mrr.2023.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The gut and its microbiome have a major impact on many aspects of health and are therefore also an attractive target for drug- or food-based therapies. Here, we report on the added value of combining a microbiome screening model, the i-screen, with fresh intestinal tissue explants in a microfluidic gut-on-a-chip model, the Intestinal Explant Barrier Chip (IEBC). Methods: Adult human gut microbiome (fecal pool of 6 healthy donors) was cultured anaerobically in the i-screen platform for 24 h, without and with exposure to 4 mg/mL inulin. The i-screen cell-free culture supernatant was subsequently applied to the luminal side of adult human colon tissue explants (n = 3 donors), fixed in the IEBC, for 24 h and effects were evaluated. Results: The supplementation of the media with inulin promoted the growth of Anaerostipes , Bifidobacterium , Blautia , and Collinsella in the in vitro i-screen, and triggered an elevated production of butyrate by the microbiota. Human colon tissue exposed to inulin-treated i-screen cell-free culture supernatant or control i-screen cell-free culture supernatant with added short-chain fatty acids (SCFAs) showed improved tissue barrier integrity measured by a 28.2%-34.2% reduction in FITC-dextran 4000 (FD4) leakage and 1.3 times lower transport of antipyrine. Furthermore, the release of pro-inflammatory cytokines IL-1β, IL-6, IL-8, and TNF-α was reduced under these circumstances. Gene expression profiles confirmed these findings, but showed more profound effects for inulin-treated supernatant compared to SCFA-supplemented supernatant. Conclusion: The combination of i-screen and IEBC facilitates the study of complex intestinal processes such as host-microbial metabolite interaction and gut health.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
宿主与微生物代谢物相互作用的成人肠道芯片模型表明,菊粉处理对肠道微生物群有益
背景:肠道及其微生物组对健康的许多方面都有重大影响,因此也是药物或食物疗法的一个有吸引力的目标。在此,我们报告了将微生物组筛选模型 i-screen 与微流控芯片肠道模型(Intestinal Explant Barrier Chip,IEBC)中的新鲜肠道组织外植体相结合的附加价值。方法:在 i-screen 平台上厌氧培养成年人类肠道微生物组(6 名健康供体的粪便池)24 小时,不接触和接触 4 毫克/毫升菊粉。随后将 i-screen 无细胞培养上清液涂抹到固定在 IEBC 中的成人结肠组织外植体(n = 3 名供体)的管腔侧 24 小时,并评估其效果。结果在培养基中添加菊粉能促进体外 i 筛中 Anaerostipes、Bifidobacterium、Blautia 和 Collinsella 的生长,并促使微生物群产生更多的丁酸盐。暴露于菊粉处理的 i-screen 无细胞培养上清或添加了短链脂肪酸 (SCFA) 的对照 i-screen 无细胞培养上清的人体结肠组织显示出组织屏障完整性得到了改善,FITC-葡聚糖 4000 (FD4) 渗漏减少了 28.2%-34.2%,安替比林的运输量降低了 1.3 倍。此外,在这种情况下,促炎细胞因子 IL-1β、IL-6、IL-8 和 TNF-α 的释放也有所减少。基因表达谱证实了这些发现,但与补充 SCFA 的上清液相比,菊粉处理的上清液具有更深远的影响。结论i-screen 和 IEBC 的结合有助于研究复杂的肠道过程,如宿主-微生物代谢物相互作用和肠道健康。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of the clinical efficacy of Pediococcus acidilactici CCFM6432 in alleviating depression. Possible application of Akkermansia muciniphila in stress management. The biofunction of Akkermansia muciniphila in intestinal-related diseases. Synergistic vs. complementary synbiotics: the complexity of discriminating synbiotic concepts using a Lactiplantibacillus plantarum exemplary study. Comparative genome analysis of microbial strains marketed for probiotic interventions: an extension of the Integrated Probiotic Database.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1