Credit Fraud Recognition Based on Performance Evaluation of Deep Learning Algorithm

Rawaa Ismael
{"title":"Credit Fraud Recognition Based on Performance Evaluation of Deep Learning Algorithm","authors":"Rawaa Ismael","doi":"10.25195/ijci.v50i1.454","DOIUrl":null,"url":null,"abstract":"Over time, the growth of credit cards and the financial data need credit models to support banks in making financial decisions. So, to avoid fraud in internet transactions which increased with the growth of technology it is crucial to develop an efficient fraud detection system. Deep Learning techniques are superior to other Machine Learning techniques in predicting the customer behavior of credit cards depending on the missed payments probability of customers. The BiLSTM model proposed to train on Taiwanese non-transactional dataset for bank credit cards to decrease the losses of banks. The Bidirectional LSTM reached 98% accuracy in fraud credit detection compared with other Machine Learning techniques.","PeriodicalId":53384,"journal":{"name":"Iraqi Journal for Computers and Informatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iraqi Journal for Computers and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25195/ijci.v50i1.454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Over time, the growth of credit cards and the financial data need credit models to support banks in making financial decisions. So, to avoid fraud in internet transactions which increased with the growth of technology it is crucial to develop an efficient fraud detection system. Deep Learning techniques are superior to other Machine Learning techniques in predicting the customer behavior of credit cards depending on the missed payments probability of customers. The BiLSTM model proposed to train on Taiwanese non-transactional dataset for bank credit cards to decrease the losses of banks. The Bidirectional LSTM reached 98% accuracy in fraud credit detection compared with other Machine Learning techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习算法性能评估的信用欺诈识别
随着时间的推移,信用卡和金融数据的增长需要信用模型来支持银行做出金融决策。因此,为了避免随着技术发展而增加的互联网交易中的欺诈行为,开发一个高效的欺诈检测系统至关重要。深度学习技术在预测信用卡客户行为方面优于其他机器学习技术,这取决于客户错过付款的概率。为了减少银行的损失,BiLSTM 模型建议在台湾银行信用卡非交易数据集上进行训练。与其他机器学习技术相比,双向 LSTM 在欺诈信用检测方面的准确率达到 98%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
Credit Fraud Recognition Based on Performance Evaluation of Deep Learning Algorithm COMPARATIVE STUDY OF CHAOTIC SYSTEM FOR ENCRYPTION DYNAMIC THRESHOLDING GA-BASED ECG FEATURE SELECTION IN CARDIOVASCULAR DISEASE DIAGNOSIS Evaluation of Image Cryptography by Using Secret Session Key and SF Algorithm EDIBLE FISH IDENTIFICATION BASED ON MACHINE LEARNING
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1