Organohydrogel-Based Soft SEMG Electrodes for Algorithm-Assisted Gesture Recognition

Yixin Xu, Lianjun Deng, Yuyao Lu, Jianhuan Zhang, Zhouyi Xu, Kaichen Xu, Chentao Zhang
{"title":"Organohydrogel-Based Soft SEMG Electrodes for Algorithm-Assisted Gesture Recognition","authors":"Yixin Xu,&nbsp;Lianjun Deng,&nbsp;Yuyao Lu,&nbsp;Jianhuan Zhang,&nbsp;Zhouyi Xu,&nbsp;Kaichen Xu,&nbsp;Chentao Zhang","doi":"10.1002/adsr.202300164","DOIUrl":null,"url":null,"abstract":"<p>Epidermal electronics that can monitor physiological signals such as surface electromyogram (sEMG) signals attract widespread attentions in personalized healthcare, human–machine interfaces (HMI) and virtual/augmented reality (AR/VR). However, conventional electromyographic electrodes suffer from skin discomfort, susceptibility to motion artifact interference, and short service lifetime. Here, an organohydrogel-based sEMG electrode endows with high conductivity, low modulus and long-term stability is developed by doping partially reduced graphene oxide (pRGO) into highly cross-linked organohydrogel network. The as-fabricated polyacrylamide/sodium alginate/tannic acid/partially reduced graphene oxide (PAM/SA/TA/pRGO) organohydrogel possesses farewell conductivity (4.22 S m<sup>−1</sup>) while preserving tissue-like compliance (Young's modulus ≈32 KPa), excellent stretchability (≈600%), high adhesion as well as superior anti-drying properties. In addition, a stretchable sEMG electrode for long-term reliable service is fabricated via immobilizing the organohydrogel electrodes onto a flexible very high bond (VHB) substrate. As a result, the integrated electrodes show high signal-to-noise ratio (SNR) (35.15 db) comparable to that of the commercial electrodes. Furthermore, with assistance of deep learning, the proposed sEMG electrodes obtain high identification accuracy of 97.11% in distinguishing sophisticated gestures. This system can be further exploited for real-time tele-operations and offers broad prospects in human–machine immersive interactive application.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202300164","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsr.202300164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Epidermal electronics that can monitor physiological signals such as surface electromyogram (sEMG) signals attract widespread attentions in personalized healthcare, human–machine interfaces (HMI) and virtual/augmented reality (AR/VR). However, conventional electromyographic electrodes suffer from skin discomfort, susceptibility to motion artifact interference, and short service lifetime. Here, an organohydrogel-based sEMG electrode endows with high conductivity, low modulus and long-term stability is developed by doping partially reduced graphene oxide (pRGO) into highly cross-linked organohydrogel network. The as-fabricated polyacrylamide/sodium alginate/tannic acid/partially reduced graphene oxide (PAM/SA/TA/pRGO) organohydrogel possesses farewell conductivity (4.22 S m−1) while preserving tissue-like compliance (Young's modulus ≈32 KPa), excellent stretchability (≈600%), high adhesion as well as superior anti-drying properties. In addition, a stretchable sEMG electrode for long-term reliable service is fabricated via immobilizing the organohydrogel electrodes onto a flexible very high bond (VHB) substrate. As a result, the integrated electrodes show high signal-to-noise ratio (SNR) (35.15 db) comparable to that of the commercial electrodes. Furthermore, with assistance of deep learning, the proposed sEMG electrodes obtain high identification accuracy of 97.11% in distinguishing sophisticated gestures. This system can be further exploited for real-time tele-operations and offers broad prospects in human–machine immersive interactive application.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于算法辅助手势识别的有机水凝胶软 SEMG 电极
可监测表面肌电图(sEMG)信号等生理信号的表皮电子元件在个性化医疗保健、人机界面(HMI)和虚拟/增强现实(AR/VR)领域受到广泛关注。然而,传统的肌电图电极存在皮肤不适、易受运动伪影干扰和使用寿命短等问题。本文通过在高度交联的有机水凝胶网络中掺入部分还原氧化石墨烯(pRGO),开发了一种基于有机水凝胶的 sEMG 电极,它具有高导电性、低模量和长期稳定性。制成的聚丙烯酰胺/海藻酸钠/单宁酸/部分还原氧化石墨烯(PAM/SA/TA/pRGO)有机水凝胶具有告别性导电率(4.22 S m-1),同时保持了类似组织的顺应性(杨氏模量≈32 KPa)、优异的可拉伸性(≈600%)、高粘附性以及卓越的抗干燥性能。此外,通过将有机水凝胶电极固定在柔性高粘合剂(VHB)基底上,还制造出了可长期可靠使用的可拉伸 sEMG 电极。因此,集成电极显示出与商用电极相当的高信噪比(SNR)(35.15 db)。此外,在深度学习的辅助下,所提出的 sEMG 电极在区分复杂手势方面的识别准确率高达 97.11%。该系统可进一步用于实时远程操作,在人机沉浸式交互应用中具有广阔的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transforming Renal Diagnosis: Graphene-Enhanced Lab-On-a-Chip for Multiplexed Kidney Biomarker Detection in Capillary Blood (Adv. Sensor Res. 11/2024) Masthead (Adv. Sensor Res. 11/2024) All Solid Photonic Crystal Fiber Enabled by 3D Printing Fiber Technology for Sensing of Multiple Parameters (Adv. Sensor Res. 11/2024) Design Approaches and Electromechanical Modeling of Conformable Piezoelectric-Based Ultrasound Systems (Adv. Sensor Res. 10/2024) Masthead (Adv. Sensor Res. 10/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1