The Performance Study of Microstrip Patch Antenna Made of Polyurethane - Oil Palm Empty Fruit Bunch Composite

Syarifah Norsuhaila binti Syed Mahmud, Nur Iffah Zulaikha binti Azman, N. Salim, Kok Yeow You, M. Jusoh
{"title":"The Performance Study of Microstrip Patch Antenna Made of Polyurethane - Oil Palm Empty Fruit Bunch Composite","authors":"Syarifah Norsuhaila binti Syed Mahmud, Nur Iffah Zulaikha binti Azman, N. Salim, Kok Yeow You, M. Jusoh","doi":"10.4028/p-qch4ro","DOIUrl":null,"url":null,"abstract":"In this paper, the performance of microstrip patch antenna that is made of fully biodegradable materials has been studied. The polymer resins of Polyurethane as a binder agent were produced using polyol extracted from palm oil while the host composites were made from oil palm empty fruit bunch fiber. The performance of Polyurethane – Oil Palm (PolyOP) Empty Fruit Bunch composite as a microwave dielectric substrate was tested by fabricating microstrip patch antenna on it. The performance of fabricated patch antenna was measured using Vector Network Analyzer (VNA) and is compared with simulation results obtained from High Frequency Structure Simulator (HFSS) simulator. The difference of percentage in resonant frequency, return loss, bandwidth and VSWR between simulation and measurement were found to be 0.4%, 75.2%, 67.9%, and 12.7%, respectively.","PeriodicalId":507742,"journal":{"name":"Materials Science Forum","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-qch4ro","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the performance of microstrip patch antenna that is made of fully biodegradable materials has been studied. The polymer resins of Polyurethane as a binder agent were produced using polyol extracted from palm oil while the host composites were made from oil palm empty fruit bunch fiber. The performance of Polyurethane – Oil Palm (PolyOP) Empty Fruit Bunch composite as a microwave dielectric substrate was tested by fabricating microstrip patch antenna on it. The performance of fabricated patch antenna was measured using Vector Network Analyzer (VNA) and is compared with simulation results obtained from High Frequency Structure Simulator (HFSS) simulator. The difference of percentage in resonant frequency, return loss, bandwidth and VSWR between simulation and measurement were found to be 0.4%, 75.2%, 67.9%, and 12.7%, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚氨酯-油棕空果束复合材料制成的微带贴片天线的性能研究
本文研究了由完全可生物降解材料制成的微带贴片天线的性能。作为粘合剂的聚氨酯聚合物树脂是用从棕榈油中提取的多元醇制成的,而主复合材料是用油棕空果束纤维制成的。通过在其上制作微带贴片天线,测试了聚氨酯-油棕(PolyOP)空果束复合材料作为微波介质基底的性能。使用矢量网络分析仪(VNA)测量了制作的贴片天线的性能,并将其与高频结构模拟器(HFSS)的模拟结果进行了比较。结果发现,模拟和测量结果在谐振频率、回波损耗、带宽和驻波比方面的百分比差异分别为 0.4%、75.2%、67.9% 和 12.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of Wood-Plastic Soil Tray Composite (WPSTC) Using Polymerized Coir-Wood Dust for Green Roof Structures Enhancing Dispersion Ability and Bond Strength of Boron Nitride with Epoxy Resin by Ar+ Ion Beam in Reactive Oxygen Gas Environment Evaluation of the Mechanical Properties of Recycled Coarse Aggregate Concrete against the Action of Fire Effect of Blending Constant Concentration of Acrylic Polymer with Varying Amount of Fly Ash to the Permeability and Strength of Large Aggregate Pervious Concrete Evaluation of the Influence of Brick Dust and Rice Husk Ash on the Mechanical and Physical Behavior of a Geopolymeric and Eco-Efficient Concrete with Partial Cement Replacements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1