{"title":"Typical Lipschitz images of rectifiable metric spaces","authors":"David Bate, Jakub Takáč","doi":"10.1515/crelle-2024-0004","DOIUrl":null,"url":null,"abstract":"\n <jats:p>This article studies typical 1-Lipschitz images of 𝑛-rectifiable metric spaces 𝐸 into <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msup>\n <m:mi mathvariant=\"double-struck\">R</m:mi>\n <m:mi>m</m:mi>\n </m:msup>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0004_ineq_0001.png\" />\n <jats:tex-math>\\mathbb{R}^{m}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> for <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mi>m</m:mi>\n <m:mo>≥</m:mo>\n <m:mi>n</m:mi>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0004_ineq_0002.png\" />\n <jats:tex-math>m\\geq n</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>.\nFor example, if <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mi>E</m:mi>\n <m:mo>⊂</m:mo>\n <m:msup>\n <m:mi mathvariant=\"double-struck\">R</m:mi>\n <m:mi>k</m:mi>\n </m:msup>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0004_ineq_0003.png\" />\n <jats:tex-math>E\\subset\\mathbb{R}^{k}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, we show that the Jacobian of such a typical 1-Lipschitz map equals 1 <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msup>\n <m:mi mathvariant=\"script\">H</m:mi>\n <m:mi>n</m:mi>\n </m:msup>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0004_ineq_0004.png\" />\n <jats:tex-math>\\mathcal{H}^{n}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>-almost everywhere and, if <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mi>m</m:mi>\n <m:mo>></m:mo>\n <m:mi>n</m:mi>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0004_ineq_0005.png\" />\n <jats:tex-math>m>n</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, preserves the Hausdorff measure of 𝐸.\nIn general, we provide sufficient conditions, in terms of the tangent norms of 𝐸, for when a typical 1-Lipschitz map preserves the Hausdorff measure of 𝐸, up to some constant multiple.\nAlmost optimal results for strongly 𝑛-rectifiable metric spaces are obtained.\nOn the other hand, for any norm <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mo stretchy=\"false\">|</m:mo>\n <m:mo>⋅</m:mo>\n <m:mo stretchy=\"false\">|</m:mo>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0004_ineq_0006.png\" />\n <jats:tex-math>\\lvert\\,{\\cdot}\\,\\rvert</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> on <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msup>\n <m:mi mathvariant=\"double-struck\">R</m:mi>\n <m:mi>m</m:mi>\n </m:msup>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0004_ineq_0001.png\" />\n <jats:tex-math>\\mathbb{R}^{m}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, we show that, in the space of 1-Lipschitz functions from <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mo stretchy=\"false\">(</m:mo>\n <m:msup>\n <m:mrow>\n <m:mo stretchy=\"false\">[</m:mo>\n <m:mrow>\n <m:mo>−</m:mo>\n <m:mn>1</m:mn>\n </m:mrow>\n <m:mo>,</m:mo>\n <m:mn>1</m:mn>\n <m:mo stretchy=\"false\">]</m:mo>\n </m:mrow>\n <m:mi>n</m:mi>\n </m:msup>\n <m:mo>,</m:mo>\n <m:msub>\n <m:mrow>\n <m:mo stretchy=\"false\">|</m:mo>\n <m:mo>⋅</m:mo>\n <m:mo stretchy=\"false\">|</m:mo>\n </m:mrow>\n <m:mi mathvariant=\"normal\">∞</m:mi>\n </m:msub>\n <m:mo stretchy=\"false\">)</m:mo>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0004_ineq_0008.png\" />\n <jats:tex-math>([-1,1]^{n},\\lvert\\,{\\cdot}\\,\\rvert_{\\infty})</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> to <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mo stretchy=\"false\">(</m:mo>\n <m:msup>\n <m:mi mathvariant=\"double-struck\">R</m:mi>\n <m:mi>m</m:mi>\n </m:msup>\n <m:mo>,</m:mo>\n <m:mrow>\n <m:mo stretchy=\"false\">|</m:mo>\n <m:mo>⋅</m:mo>\n <m:mo stretchy=\"false\">|</m:mo>\n </m:mrow>\n <m:mo stretchy=\"false\">)</m:mo>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0004_ineq_0009.png\" />\n <jats:tex-math>(\\mathbb{R}^{m},\\lvert\\,{\\cdot}\\,\\rvert)</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, the <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msup>\n <m:mi mathvariant=\"script\">H</m:mi>\n <m:mi>n</m:mi>\n </m:msup>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0004_ineq_0004.png\" />\n <jats:tex-math>\\mathcal{H}^{n}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>-measure of a typical image is not bounded below by any <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mi mathvariant=\"normal\">Δ</m:mi>\n <m:mo>></m:mo>\n <m:mn>0</m:mn>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0004_ineq_0011.png\" />\n <jats:tex-math>\\Delta>0</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>.</jats:p>","PeriodicalId":508691,"journal":{"name":"Journal für die reine und angewandte Mathematik (Crelles Journal)","volume":"12 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal für die reine und angewandte Mathematik (Crelles Journal)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/crelle-2024-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This article studies typical 1-Lipschitz images of 𝑛-rectifiable metric spaces 𝐸 into Rm\mathbb{R}^{m} for m≥nm\geq n.
For example, if E⊂RkE\subset\mathbb{R}^{k}, we show that the Jacobian of such a typical 1-Lipschitz map equals 1 Hn\mathcal{H}^{n}-almost everywhere and, if m>nm>n, preserves the Hausdorff measure of 𝐸.
In general, we provide sufficient conditions, in terms of the tangent norms of 𝐸, for when a typical 1-Lipschitz map preserves the Hausdorff measure of 𝐸, up to some constant multiple.
Almost optimal results for strongly 𝑛-rectifiable metric spaces are obtained.
On the other hand, for any norm |⋅|\lvert\,{\cdot}\,\rvert on Rm\mathbb{R}^{m}, we show that, in the space of 1-Lipschitz functions from ([−1,1]n,|⋅|∞)([-1,1]^{n},\lvert\,{\cdot}\,\rvert_{\infty}) to (Rm,|⋅|)(\mathbb{R}^{m},\lvert\,{\cdot}\,\rvert), the Hn\mathcal{H}^{n}-measure of a typical image is not bounded below by any Δ>0\Delta>0.
例如,如果 E ⊂ R k E\subset\mathbb{R}^{k} ,我们会发现这样一个典型的 1-Lipschitz 映射的 Jacobian 几乎在所有地方都等于 1 H n \mathcal{H}^{n} -,并且如果 m > n m>n ,则 1 Lipschitz 映射的 Jacobian 几乎在所有地方都等于 1 H n \mathcal{H}^{n} -。 我们证明,这样一个典型的 1-Lipschitz 映射的 Jacobian 几乎在所有地方都等于 1 H n \mathcal{H}^{n} ,并且,如果 m > n m>n ,会保留𝐸的 Hausdorff 度量。一般来说,我们从𝐸的切线规范出发,提供了典型的1-Lipschitz映射保留𝐸的Hausdorff度量的充分条件,直至某个常数倍数。