W Paschen, R Schmidt-Kastner, J Hallmayer, B Djuricic
{"title":"Polyamines in cerebral ischemia.","authors":"W Paschen, R Schmidt-Kastner, J Hallmayer, B Djuricic","doi":"10.1007/BF03160353","DOIUrl":null,"url":null,"abstract":"<p><p>The present series of experiments was designed to study regional profiles of polyamines (putrescine, spermidine, and spermine) in reversible cerebral ischemia produced in rats and Mongolian gerbils. Polyamine profiles did not change during ischemia, but did following recirculation. The most prominent changes were a dramatic postischemic increase in putrescine and a marked decrease in spermine in severely damaged regions. Within a given brain structure, the postischemic putrescine levels correlated closely with the density of ischemic cell injury and the time period of cerebral ischemia. Furthermore, putrescine was already considerably increased in the CA1-subfield of the hippocampus of gerbils after 8 h recirculation, i.e., at a time when the cells are still intact. The results indicate that putrescine may be viewed as an excellent biochemical correlate of ischemic cell injury. The postischemic changes in putrescine levels are discussed in relation to the known activities of this compound.</p>","PeriodicalId":77753,"journal":{"name":"Neurochemical pathology","volume":"9 ","pages":"1-20"},"PeriodicalIF":0.0000,"publicationDate":"1988-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/BF03160353","citationCount":"70","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemical pathology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/BF03160353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 70
Abstract
The present series of experiments was designed to study regional profiles of polyamines (putrescine, spermidine, and spermine) in reversible cerebral ischemia produced in rats and Mongolian gerbils. Polyamine profiles did not change during ischemia, but did following recirculation. The most prominent changes were a dramatic postischemic increase in putrescine and a marked decrease in spermine in severely damaged regions. Within a given brain structure, the postischemic putrescine levels correlated closely with the density of ischemic cell injury and the time period of cerebral ischemia. Furthermore, putrescine was already considerably increased in the CA1-subfield of the hippocampus of gerbils after 8 h recirculation, i.e., at a time when the cells are still intact. The results indicate that putrescine may be viewed as an excellent biochemical correlate of ischemic cell injury. The postischemic changes in putrescine levels are discussed in relation to the known activities of this compound.