An Optical Neuromorphic Sensor with High Uniformity and High Linearity for Indoor Visible Light Localization

Shuai Zhong, Jiachao Zhou, Fangwen Yu, Mingkun Xu, Yishu Zhang, Bin Yu, Rong Zhao
{"title":"An Optical Neuromorphic Sensor with High Uniformity and High Linearity for Indoor Visible Light Localization","authors":"Shuai Zhong,&nbsp;Jiachao Zhou,&nbsp;Fangwen Yu,&nbsp;Mingkun Xu,&nbsp;Yishu Zhang,&nbsp;Bin Yu,&nbsp;Rong Zhao","doi":"10.1002/adsr.202300197","DOIUrl":null,"url":null,"abstract":"<p>The visible light localization system holds great promise as a highly accurate indoor positioning method. However, it still suffers deficiencies including high latency and power consumption, and large area cost. To address these issues, a high energy efficient spiking localization system inspired by the biological spatial representation system is presented. This system utilizes an optical neuromorphic sensor, consisting of a compact NbO<sub>x</sub>-based threshold switching memristor and a photoresistor. The key lies in the system's ability to convert analog light information into electrical spikes, resembling the behavior of sensory neurons, which enables the encoding of light illuminance through spiking frequency. Consequently, the system achieves high uniformity, high linearity (≈10%), and high sensitivity (≈1.1 kHz Lux<sup>−1</sup> and ≈72.7 kHz cm<sup>−1</sup> for light illuminance and distance detection, respectively), indicating its potential suitability for visible light localizations. By leveraging a spiking neural network classifier, the system successfully distinguishes locations with different illuminances. After 150 epochs, it achieves an accuracy of 97%, showcasing the feasibility of using the spiking localization system in real-world applications. The approach of spike-based light positioning is a leap forward toward the development of future compact, highly energy-efficient visible light localization systems.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202300197","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsr.202300197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The visible light localization system holds great promise as a highly accurate indoor positioning method. However, it still suffers deficiencies including high latency and power consumption, and large area cost. To address these issues, a high energy efficient spiking localization system inspired by the biological spatial representation system is presented. This system utilizes an optical neuromorphic sensor, consisting of a compact NbOx-based threshold switching memristor and a photoresistor. The key lies in the system's ability to convert analog light information into electrical spikes, resembling the behavior of sensory neurons, which enables the encoding of light illuminance through spiking frequency. Consequently, the system achieves high uniformity, high linearity (≈10%), and high sensitivity (≈1.1 kHz Lux−1 and ≈72.7 kHz cm−1 for light illuminance and distance detection, respectively), indicating its potential suitability for visible light localizations. By leveraging a spiking neural network classifier, the system successfully distinguishes locations with different illuminances. After 150 epochs, it achieves an accuracy of 97%, showcasing the feasibility of using the spiking localization system in real-world applications. The approach of spike-based light positioning is a leap forward toward the development of future compact, highly energy-efficient visible light localization systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于室内可见光定位的高均匀性和高线性度光学神经形态传感器
作为一种高精度的室内定位方法,可见光定位系统前景广阔。然而,它仍然存在延迟和功耗高、面积成本大等缺陷。为解决这些问题,本文提出了一种受生物空间表示系统启发的高能效尖峰定位系统。该系统采用光学神经形态传感器,由一个基于氧化铌的紧凑型阈值开关忆阻器和一个光敏电阻组成。其关键在于该系统能够将模拟光信息转换为电尖峰,类似于感觉神经元的行为,从而能够通过尖峰频率对光照度进行编码。因此,该系统实现了高均匀性、高线性度(≈10%)和高灵敏度(光照度和距离检测的灵敏度分别为≈1.1 kHz Lux-1 和≈72.7 kHz cm-1),表明它可能适用于可见光定位。通过利用尖峰神经网络分类器,该系统成功区分了不同照度的位置。经过 150 次历时后,其准确率达到 97%,证明了尖峰定位系统在实际应用中的可行性。基于尖峰光定位的方法是未来开发紧凑型、高能效可见光定位系统的一个飞跃。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart Hydrogel Sensors for Health Monitoring and Early Warning (Adv. Sensor Res. 9/2024) Masthead (Adv. Sensor Res. 9/2024) Integrated Microwave Photonic Sensors Based on Microresonators (Adv. Sensor Res. 8/2024) Development of Kirigami-Patterned Stretchable Tactile Sensor Array with Soft Hinges for Highly Sensitive Force Detection (Adv. Sensor Res. 8/2024) Masthead (Adv. Sensor Res. 8/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1