Study and Performance Evaluation of Brain MRI Images Using Aartificial Intelligence

Pornima B. Niranjane, Vaishali B. Niranjane, Krushil M. Punwatkar
{"title":"Study and Performance Evaluation of Brain MRI Images Using Aartificial Intelligence","authors":"Pornima B. Niranjane, Vaishali B. Niranjane, Krushil M. Punwatkar","doi":"10.32628/ijsrst241124","DOIUrl":null,"url":null,"abstract":"The limits and potential of medical imaging are expanded by artificial intelligence. Therefore, in an effort to improve the performance and accuracy of diagnosing brain abnormalities, researchers are constantly working to create an effective and automated diagnosis method. Tumour identification and diagnosis have been achieved by the use of magnetic resonance imaging (MRI). Medical professionals can identify and categorise tumours as normal or abnormal with the aid of digital image processing. This research focuses on various neural networks for brain MRI tumour and non-tumour image categorization and confusion matrix performance evaluation. Otsu's thresholding approach is used for segmentation out of all the segmentation techniques. For feature extraction, a grey level co-occurrence matrix (GLCM) is employed. The classification techniques utilized in this study produce the necessary results in terms of confusion matrix parameters, which may be used to assess the classifier's performance in terms of F1 score, accuracy, sensitivity, and precision.","PeriodicalId":14387,"journal":{"name":"International Journal of Scientific Research in Science and Technology","volume":"47 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Scientific Research in Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32628/ijsrst241124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The limits and potential of medical imaging are expanded by artificial intelligence. Therefore, in an effort to improve the performance and accuracy of diagnosing brain abnormalities, researchers are constantly working to create an effective and automated diagnosis method. Tumour identification and diagnosis have been achieved by the use of magnetic resonance imaging (MRI). Medical professionals can identify and categorise tumours as normal or abnormal with the aid of digital image processing. This research focuses on various neural networks for brain MRI tumour and non-tumour image categorization and confusion matrix performance evaluation. Otsu's thresholding approach is used for segmentation out of all the segmentation techniques. For feature extraction, a grey level co-occurrence matrix (GLCM) is employed. The classification techniques utilized in this study produce the necessary results in terms of confusion matrix parameters, which may be used to assess the classifier's performance in terms of F1 score, accuracy, sensitivity, and precision.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用人工智能对大脑磁共振成像进行研究和性能评估
人工智能拓展了医学成像的极限和潜力。因此,为了提高诊断脑部异常的性能和准确性,研究人员一直在努力创造一种有效的自动诊断方法。肿瘤的识别和诊断是通过磁共振成像(MRI)来实现的。医学专家可借助数字图像处理技术识别肿瘤并将其分为正常或异常。这项研究的重点是用于脑磁共振成像肿瘤和非肿瘤图像分类的各种神经网络以及混淆矩阵性能评估。在所有分割技术中,大津阈值法被用于分割。在特征提取方面,采用了灰度共现矩阵(GLCM)。本研究采用的分类技术可产生必要的混淆矩阵参数结果,这些参数可用于评估分类器在 F1 分数、准确度、灵敏度和精确度方面的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Radiation Dose Rate and Evaluation of Whole Body Scan SPECT/CT Images in Thyroid Carcinoma Radioablation Patients Using Radioisotope 131I Biodistribution and Absorption of Radiopharmaceutical 99mTc MDP in Various Bones of Lung Cancer Patients Using SPECT/CT Modalities Study of Intermolecular Interaction by Ultrasonic Measurements of 1-Butanol-Pyridine and Toluene-Pyridine at 303.15 To 323.15 K and Statistical Analysis of Liquid State Theories Review about Organic-Inorganic Perovskite Single Crystal : Synthesis Methods, Properties and Applications Machine Learning Based Liver Cirrhosis Detection Using Different Algorithm : A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1