Imbalance Dataset in Aspect-Based Sentiment Analysis on Game Genshin Impact Review

Prabowo Adi Perwira, Nelly Indriani Widiastuti
{"title":"Imbalance Dataset in Aspect-Based Sentiment Analysis on Game Genshin Impact Review","authors":"Prabowo Adi Perwira, Nelly Indriani Widiastuti","doi":"10.20895/infotel.v16i1.984","DOIUrl":null,"url":null,"abstract":"Sentiment analysis was commonly used to determine the polarity of the review text. However, there is a problem if some reviews have more than one aspect with different polarities, so the reviews have more than one polarity. That has happened in some reviews on the game Genshin Impact. Not merely that, the number of sentiments contained in a review is not always the same as other reviews will cause imbalanced data. So, this study will handle imbalance data with Random Under-Sampling and Random Over-Sampling on aspect-based-sentiment-analysis of Genshin Impact Review with Multinomial Naïve-Bayes, so that the classification prediction does not ignore the minority class due to the dominance of the majority class. The classification process used K-Fold Cross Validation (k=10) validation method and the Laplace smoothing technique on Multinomial Naïve Bayes. As a result, the conclusion is that Random Oversampling had better accuracy than Random Undersampling in handling imbalanced data on aspect-based sentiment analysis of Genshin Impact game Review in Indonesian with Naïve Bayes Multinomial, with the highest accuracy of 85.55%.","PeriodicalId":30672,"journal":{"name":"Jurnal Infotel","volume":"24 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Infotel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20895/infotel.v16i1.984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sentiment analysis was commonly used to determine the polarity of the review text. However, there is a problem if some reviews have more than one aspect with different polarities, so the reviews have more than one polarity. That has happened in some reviews on the game Genshin Impact. Not merely that, the number of sentiments contained in a review is not always the same as other reviews will cause imbalanced data. So, this study will handle imbalance data with Random Under-Sampling and Random Over-Sampling on aspect-based-sentiment-analysis of Genshin Impact Review with Multinomial Naïve-Bayes, so that the classification prediction does not ignore the minority class due to the dominance of the majority class. The classification process used K-Fold Cross Validation (k=10) validation method and the Laplace smoothing technique on Multinomial Naïve Bayes. As a result, the conclusion is that Random Oversampling had better accuracy than Random Undersampling in handling imbalanced data on aspect-based sentiment analysis of Genshin Impact game Review in Indonesian with Naïve Bayes Multinomial, with the highest accuracy of 85.55%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于方面的情感分析中的不平衡数据集对游戏《源氏物语》影响的评论
情感分析通常用于确定评论文本的极性。但是,如果某些评论有多个不同极性的方面,那么评论就会有多个极性,这样就会出现问题。游戏《源氏冲击》的一些评论就出现了这种情况。不仅如此,评论中包含的情感数量不一定与其他评论相同,也会造成数据不平衡。因此,本研究将使用随机欠采样和随机过采样来处理不平衡数据,并使用多项式 Naïve-Bayes 对《源氏物语》评论进行基于方面的情感分析,从而使分类预测不会因多数类占优势而忽略少数类。分类过程使用了 K-Fold Cross Validation(k=10)验证方法和多项式奈维贝叶斯的拉普拉斯平滑技术。结果表明,在使用奈伊夫贝叶斯多项式对印尼语《元气冲击》游戏评论进行基于方面的情感分析时,随机过度采样比随机不足采样在处理不平衡数据方面具有更好的准确性,准确率最高,达到 85.55%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
47
审稿时长
6 weeks
期刊最新文献
Geo-Navigation in Museums: Augmented Reality Application in the Geological Museum Indonesia Cloud-based Metabase GIS Data Analysis Platform Quality Management According to ISO 9126 Indicators Solar Panel Power Generator with Automatic Charging using PWM System based on Microcontroller Weighted Voting Ensemble Learning of CNN Architectures for Diabetic Retinopathy Classification An Evaluation of Wireless Network Security with Penetration Testing Method at PT PLN UP2D S2JB
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1