Refining expected market return estimation: fusing multiple valuation models as an approach to reducing uncertainty

Thiago Petchak Gomes
{"title":"Refining expected market return estimation: fusing multiple valuation models as an approach to reducing uncertainty","authors":"Thiago Petchak Gomes","doi":"10.23925/2446-9513.2024v11id65021","DOIUrl":null,"url":null,"abstract":"This paper presents a methodology aimed at reducing the uncertainty associated with estimating the expected market return within a bounded rationality framework. The proposed approach involves calculating the implicit rate of return using various valuation models and subsequently merging them using the Kalman Filter technique to minimize estimation errors. The contribution of this study lies in the application of the Kalman Filter, which enables the expected market return to be refined and provides a more accurate estimate by mitigating uncertainty. The ability to determine an accurately expected market return assumes critical significance in investment decision-making. Therefore, investors can utilize this methodology as a tool to enhance the precision of their investment choices. By reducing uncertainty in estimating the expected market return, this approach empowers investors to make more informed and confident decisions.","PeriodicalId":508064,"journal":{"name":"Redeca, Revista Eletrônica do Departamento de Ciências Contábeis & Departamento de Atuária e Métodos Quantitativos","volume":"86 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redeca, Revista Eletrônica do Departamento de Ciências Contábeis & Departamento de Atuária e Métodos Quantitativos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23925/2446-9513.2024v11id65021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a methodology aimed at reducing the uncertainty associated with estimating the expected market return within a bounded rationality framework. The proposed approach involves calculating the implicit rate of return using various valuation models and subsequently merging them using the Kalman Filter technique to minimize estimation errors. The contribution of this study lies in the application of the Kalman Filter, which enables the expected market return to be refined and provides a more accurate estimate by mitigating uncertainty. The ability to determine an accurately expected market return assumes critical significance in investment decision-making. Therefore, investors can utilize this methodology as a tool to enhance the precision of their investment choices. By reducing uncertainty in estimating the expected market return, this approach empowers investors to make more informed and confident decisions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
完善预期市场回报估算:融合多种估值模型,降低不确定性
本文提出了一种方法,旨在减少在有界理性框架内估算预期市场回报率时的不确定性。所提出的方法包括使用各种估值模型计算隐含回报率,然后使用卡尔曼滤波器技术将它们合并,以尽量减少估计误差。本研究的贡献在于卡尔曼滤波器的应用,它使预期市场回报率得以细化,并通过减少不确定性提供更准确的估计。准确确定预期市场回报的能力在投资决策中具有至关重要的意义。因此,投资者可以利用这一方法作为工具,提高投资选择的准确性。通过减少预期市场回报估算中的不确定性,这种方法使投资者能够做出更明智、更自信的决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Análise dos programas de integridade das empresas listadas no Ibovespa na ótica dos critérios apontados nos formulários de referência da CVM Efeito da pandemia COVID-19 no desempenho financeiro das empresas de capital aberto do setor de shopping centers na América Latina Refining expected market return estimation: fusing multiple valuation models as an approach to reducing uncertainty LGPD: novos fatores associados à sua aderência por profissionais de contabilidade Finanças pessoais: um estudo envolvendo os alunos do curso de Ciências Contábeis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1