Transient Response of Southern Ocean Ecosystems During Heinrich Stadials

IF 3.2 2区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Paleoceanography and Paleoclimatology Pub Date : 2024-02-01 DOI:10.1029/2023pa004754
Himadri Saini, K. Meissner, L. Menviel, K. Kvale
{"title":"Transient Response of Southern Ocean Ecosystems During Heinrich Stadials","authors":"Himadri Saini, K. Meissner, L. Menviel, K. Kvale","doi":"10.1029/2023pa004754","DOIUrl":null,"url":null,"abstract":"Antarctic ice core records suggest that atmospheric CO2 increased by 15–20 ppm during Heinrich stadials (HS). These periods of abrupt CO2 increase are associated with a significant weakening of the Atlantic meridional overturning circulation (AMOC), and a warming at high southern latitudes. As such, modeling studies have explored the link between changes in AMOC, high southern latitude climate and atmospheric CO2. While proxy records suggest that the aeolian iron input to the Southern Ocean decreased significantly during HS, the potential impact on CO2 of reduced iron input combined with oceanic circulation changes has not been studied in detail. Here, we quantify the respective and combined impacts of reduced iron fertilization and AMOC weakening on CO2 by performing numerical experiments with an Earth system model under boundary conditions representing 40,000 years before present (ka). Our study indicates that reduced iron input can contribute up to 6 ppm increase in CO2 during an idealized Heinrich stadial. This is caused by a 5% reduction in nutrient utilization in the Southern Ocean, leading to reduced export production and increased carbon outgassing from the Southern Ocean. An AMOC weakening under 40ka conditions and without changes in surface winds leads to a ∼0.5 ppm CO2 increase. The combined impact of AMOC shutdown and weakened iron fertilization is almost linear, leading to a total CO2 increase of 7 ppm. Therefore, this study highlights the need of including changes in aeolian iron input when studying the processes leading to changes in atmospheric CO2 concentration during HS.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleoceanography and Paleoclimatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023pa004754","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Antarctic ice core records suggest that atmospheric CO2 increased by 15–20 ppm during Heinrich stadials (HS). These periods of abrupt CO2 increase are associated with a significant weakening of the Atlantic meridional overturning circulation (AMOC), and a warming at high southern latitudes. As such, modeling studies have explored the link between changes in AMOC, high southern latitude climate and atmospheric CO2. While proxy records suggest that the aeolian iron input to the Southern Ocean decreased significantly during HS, the potential impact on CO2 of reduced iron input combined with oceanic circulation changes has not been studied in detail. Here, we quantify the respective and combined impacts of reduced iron fertilization and AMOC weakening on CO2 by performing numerical experiments with an Earth system model under boundary conditions representing 40,000 years before present (ka). Our study indicates that reduced iron input can contribute up to 6 ppm increase in CO2 during an idealized Heinrich stadial. This is caused by a 5% reduction in nutrient utilization in the Southern Ocean, leading to reduced export production and increased carbon outgassing from the Southern Ocean. An AMOC weakening under 40ka conditions and without changes in surface winds leads to a ∼0.5 ppm CO2 increase. The combined impact of AMOC shutdown and weakened iron fertilization is almost linear, leading to a total CO2 increase of 7 ppm. Therefore, this study highlights the need of including changes in aeolian iron input when studying the processes leading to changes in atmospheric CO2 concentration during HS.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海因里希恒星期南大洋生态系统的瞬态响应
南极冰芯记录表明,在海因里希滞留期(HS),大气中的二氧化碳增加了 15-20 ppm。这些二氧化碳突然增加的时期与大西洋经向翻转环流(AMOC)的显著减弱和南半球高纬度地区的变暖有关。因此,模拟研究探索了大西洋经向翻转环流、南纬高纬度气候和大气二氧化碳变化之间的联系。虽然代用记录表明,在 HS 期间,南大洋的风化铁输入量显著减少,但尚未详细研究铁输入量减少与大洋环流变化相结合对二氧化碳的潜在影响。在此,我们通过一个地球系统模型,在代表距今(ka)4万年前的边界条件下进行数值实验,量化了铁肥减少和AMOC减弱对二氧化碳的各自和综合影响。我们的研究表明,在理想化的海因里希恒星期,还原铁输入可导致二氧化碳增加多达 6 ppm。这是由于南大洋的营养物质利用率降低了 5%,导致南大洋的出口生产减少和碳排出增加。在 40ka 条件下,在表层风没有变化的情况下,AMOC 的减弱会导致二氧化碳增加 ∼0.5 ppm。AMOC关闭和铁肥力减弱的综合影响几乎是线性的,导致二氧化碳总量增加7ppm。因此,这项研究强调,在研究 HS 期间导致大气二氧化碳浓度变化的过程时,有必要将风化铁输入量的变化包括在内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Paleoceanography and Paleoclimatology
Paleoceanography and Paleoclimatology Earth and Planetary Sciences-Atmospheric Science
CiteScore
6.20
自引率
11.40%
发文量
107
期刊介绍: Paleoceanography and Paleoclimatology (PALO) publishes papers dealing with records of past environments, biota and climate. Understanding of the Earth system as it was in the past requires the employment of a wide range of approaches including marine and lacustrine sedimentology and speleothems; ice sheet formation and flow; stable isotope, trace element, and organic geochemistry; paleontology and molecular paleontology; evolutionary processes; mineralization in organisms; understanding tree-ring formation; seismic stratigraphy; physical, chemical, and biological oceanography; geochemical, climate and earth system modeling, and many others. The scope of this journal is regional to global, rather than local, and includes studies of any geologic age (Precambrian to Quaternary, including modern analogs). Within this framework, papers on the following topics are to be included: chronology, stratigraphy (where relevant to correlation of paleoceanographic events), paleoreconstructions, paleoceanographic modeling, paleocirculation (deep, intermediate, and shallow), paleoclimatology (e.g., paleowinds and cryosphere history), global sediment and geochemical cycles, anoxia, sea level changes and effects, relations between biotic evolution and paleoceanography, biotic crises, paleobiology (e.g., ecology of “microfossils” used in paleoceanography), techniques and approaches in paleoceanographic inferences, and modern paleoceanographic analogs, and quantitative and integrative analysis of coupled ocean-atmosphere-biosphere processes. Paleoceanographic and Paleoclimate studies enable us to use the past in order to gain information on possible future climatic and biotic developments: the past is the key to the future, just as much and maybe more than the present is the key to the past.
期刊最新文献
Extreme Planktic Foraminiferal Dwarfism Across the ETM2 in the Tethys Realm in Response to Warming Reconstruction of Cenozoic δ11Bsw Using a Gaussian Process Impact of Intra‐Skeletal Calcite on the Preservation of Coral Geochemistry and Implications for Paleoclimate Reconstruction Tropical Warming and Intensification of the West African Monsoon During the Miocene Climatic Optimum Shell Reworking Impacts on Climate Variability Reconstructions Using Individual Foraminiferal Analyses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1