Data cube-based storage optimization for resource-constrained edge computing

IF 3.2 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS High-Confidence Computing Pub Date : 2024-02-28 DOI:10.1016/j.hcc.2024.100212
{"title":"Data cube-based storage optimization for resource-constrained edge computing","authors":"","doi":"10.1016/j.hcc.2024.100212","DOIUrl":null,"url":null,"abstract":"<div><div>In the evolving landscape of the digital era, edge computing emerges as an essential paradigm, especially critical for low-latency, real-time applications and Internet of Things (IoT) environments. Despite its advantages, edge computing faces severe limitations in storage capabilities and is fraught with reliability issues due to its resource-constrained nature and exposure to challenging conditions. To address these challenges, this work presents a tailored storage mechanism for edge computing, focusing on space efficiency and data reliability. Our method comprises three key steps: relation factorization, column clustering, and erasure encoding with compression. We successfully reduce the required storage space by deconstructing complex database tables and optimizing data organization within these sub-tables. We further add a layer of reliability through erasure encoding. Comprehensive experiments on TPC-H datasets substantiate our approach, demonstrating storage savings of up to 38.35% and time efficiency improvements by 3.96x in certain cases. Furthermore, our clustering technique shows a potential for additional storage reduction up to 40.41%.</div></div>","PeriodicalId":100605,"journal":{"name":"High-Confidence Computing","volume":"4 4","pages":"Article 100212"},"PeriodicalIF":3.2000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High-Confidence Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667295224000151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In the evolving landscape of the digital era, edge computing emerges as an essential paradigm, especially critical for low-latency, real-time applications and Internet of Things (IoT) environments. Despite its advantages, edge computing faces severe limitations in storage capabilities and is fraught with reliability issues due to its resource-constrained nature and exposure to challenging conditions. To address these challenges, this work presents a tailored storage mechanism for edge computing, focusing on space efficiency and data reliability. Our method comprises three key steps: relation factorization, column clustering, and erasure encoding with compression. We successfully reduce the required storage space by deconstructing complex database tables and optimizing data organization within these sub-tables. We further add a layer of reliability through erasure encoding. Comprehensive experiments on TPC-H datasets substantiate our approach, demonstrating storage savings of up to 38.35% and time efficiency improvements by 3.96x in certain cases. Furthermore, our clustering technique shows a potential for additional storage reduction up to 40.41%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于数据立方体的存储优化,适用于资源受限的边缘计算
在不断发展的数字时代,边缘计算成为一种重要的模式,对于低延迟、实时应用和物联网(IoT)环境尤为重要。尽管边缘计算具有诸多优势,但由于其资源受限的特性和暴露在挑战性条件下,边缘计算在存储能力方面面临着严重的限制,并且充满了可靠性问题。为了应对这些挑战,本研究提出了一种为边缘计算量身定制的存储机制,重点关注空间效率和数据可靠性。我们的方法包括三个关键步骤:关系因式分解、列聚类和压缩擦除编码。我们通过分解复杂的数据库表并优化这些子表内的数据组织,成功地减少了所需的存储空间。我们还通过擦除编码进一步增加了可靠性。在 TPC-H 数据集上进行的综合实验证实了我们的方法,在某些情况下,存储空间节省高达 38.35%,时间效率提高了 3.96 倍。此外,我们的聚类技术还显示出额外减少 40.41% 存储空间的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
0
期刊最新文献
Identity-based threshold (multi) signature with private accountability for privacy-preserving blockchain Navigating the Digital Twin Network landscape: A survey on architecture, applications, privacy and security Erratum to “An effective digital audio watermarking using a deep convolutional neural network with a search location optimization algorithm for improvement in Robustness and Imperceptibility” [High-Confid. Comput. 3 (2023) 100153] On Building Automation System security SoK: Decentralized Storage Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1