{"title":"Organizational Processes for Adopting Breakthrough Technology: Text Mining of AI Perception among Japanese Firms","authors":"Yusuke Hoshino, Takashi Hirao","doi":"10.3390/asi7010013","DOIUrl":null,"url":null,"abstract":"Artificial intelligence (AI) has become popular worldwide after technological breakthroughs in the early 2010s. Accordingly, many organizations and individuals have been using AI for various applications. Previous research has been dominated by case studies regarding the industrial use of AI, although how time-series changes affect users’ perceptions has not been clarified yet. This study analyzes time-series changes in AI perceptions through text mining from nonfinancial information obtained from Japanese firms’ disclosures. The main findings of this study are as follows: first, perceptions of AI vary across industries; second, the business sector has progressed through the stages of recognition, investment, strategization, commercialization, and monetization. This transition is concurrent with each category’s evolving interpretation of the innovator theory proposed by Rogers (2003), to some extent. Third, it took approximately a decade from the breakthrough technology to the monetization by Japanese firms. Our findings underline the importance of speeding up the organizational process through intervention and contribution to the areas regarding “diffusion of innovation” and perceptual characteristics.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"123 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/asi7010013","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial intelligence (AI) has become popular worldwide after technological breakthroughs in the early 2010s. Accordingly, many organizations and individuals have been using AI for various applications. Previous research has been dominated by case studies regarding the industrial use of AI, although how time-series changes affect users’ perceptions has not been clarified yet. This study analyzes time-series changes in AI perceptions through text mining from nonfinancial information obtained from Japanese firms’ disclosures. The main findings of this study are as follows: first, perceptions of AI vary across industries; second, the business sector has progressed through the stages of recognition, investment, strategization, commercialization, and monetization. This transition is concurrent with each category’s evolving interpretation of the innovator theory proposed by Rogers (2003), to some extent. Third, it took approximately a decade from the breakthrough technology to the monetization by Japanese firms. Our findings underline the importance of speeding up the organizational process through intervention and contribution to the areas regarding “diffusion of innovation” and perceptual characteristics.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico