Email spam detection: a comparison of svm and naive bayes using bayesian optimization and grid search parameters

Dzaky Budiman, Zayyan Zayyan, Ainun Mardiana, Alfira Aulia Mahrani
{"title":"Email spam detection: a comparison of svm and naive bayes using bayesian optimization and grid search parameters","authors":"Dzaky Budiman, Zayyan Zayyan, Ainun Mardiana, Alfira Aulia Mahrani","doi":"10.52465/josre.v2i1.260","DOIUrl":null,"url":null,"abstract":"Spam emails are still a big problem, crowding out inboxes and annoying email users everywhere. SVM and Naive Bayes are frequently used algorithms that have demonstrated excellent performance in performing text classification, including spam detection. The purpose of this study is to evaluate the overall performance of SVM and Naive Bayes in the context of detecting spam emails using default parameters. This research utilizes Bayesian Optimization and Grid Search Parameters for both SVM and Naive Bayes models to help maximize the performance of the constructed models. This study uses a spam email dataset that has 2 sample groups, namely spam and ham. Of the three parameter selection methods that have been tested on the SVM Algorithm, Bayesian Optimization is a parameter tuning method that has the most satisfying results in accuracy, precision, recall, and f1 scores respectively with values of 98.5642%, 99.4048%, 89.","PeriodicalId":105983,"journal":{"name":"Journal of Student Research Exploration","volume":"661 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Student Research Exploration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52465/josre.v2i1.260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Spam emails are still a big problem, crowding out inboxes and annoying email users everywhere. SVM and Naive Bayes are frequently used algorithms that have demonstrated excellent performance in performing text classification, including spam detection. The purpose of this study is to evaluate the overall performance of SVM and Naive Bayes in the context of detecting spam emails using default parameters. This research utilizes Bayesian Optimization and Grid Search Parameters for both SVM and Naive Bayes models to help maximize the performance of the constructed models. This study uses a spam email dataset that has 2 sample groups, namely spam and ham. Of the three parameter selection methods that have been tested on the SVM Algorithm, Bayesian Optimization is a parameter tuning method that has the most satisfying results in accuracy, precision, recall, and f1 scores respectively with values of 98.5642%, 99.4048%, 89.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
垃圾邮件检测:使用贝叶斯优化和网格搜索参数对 SVM 和天真贝叶斯进行比较
垃圾邮件仍然是一个大问题,它挤满了收件箱,让各地的电子邮件用户烦恼不已。SVM 和 Naive Bayes 是常用的算法,在进行文本分类(包括垃圾邮件检测)时表现出色。本研究的目的是评估 SVM 和 Naive Bayes 在使用默认参数检测垃圾邮件时的整体性能。本研究为 SVM 和 Naive Bayes 模型使用了贝叶斯优化和网格搜索参数,以帮助最大限度地提高所构建模型的性能。本研究使用的垃圾邮件数据集有两个样本组,即垃圾邮件组和火腿邮件组。在对 SVM 算法进行测试的三种参数选择方法中,贝叶斯优化是一种参数调整方法,其准确率、精确度、召回率和 f1 分数分别为 98.5642%、99.4048%、89.9%,结果最令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Email spam detection: a comparison of svm and naive bayes using bayesian optimization and grid search parameters Impact of sales promotion and product quality on zoya customer purchase interest Impact of product design and sales promotion on eiger customer loyalty Detection and prediction of rice plant diseases using convolutional neural network (CNN) method Application design for web-based car services to increase work time estimates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1