Observation of Wide Bandwidth and Giant Chiroptical Response Empowered by Core–Shell Micro-Helixes

IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Photonics Research Pub Date : 2024-01-29 DOI:10.1002/adpr.202300298
Xinggang Shang, Ning Wang, Chengyao Li, Wei Yan, Yitong Gu, Ruwen Peng, Nanjia Zhou, Min Qiu
{"title":"Observation of Wide Bandwidth and Giant Chiroptical Response Empowered by Core–Shell Micro-Helixes","authors":"Xinggang Shang,&nbsp;Ning Wang,&nbsp;Chengyao Li,&nbsp;Wei Yan,&nbsp;Yitong Gu,&nbsp;Ruwen Peng,&nbsp;Nanjia Zhou,&nbsp;Min Qiu","doi":"10.1002/adpr.202300298","DOIUrl":null,"url":null,"abstract":"<p>Helical microstructures exhibit unprecedented chiroptical responses particularly interesting for emerging applications such as broadband photonic components. To explore their chiral behaviors, the micro-helixes composed of polymer cores and platinum shells are proposed and realized via a two-step process combining two-photon polymerizations and sputter coating. Thanks to the core–shell multi-material configurations, the micro-helixes packed in a dense array generate an ideal chiral lineshape. Overspanning a wide range from 3 to 7 μm, the reflection-based g factors approach the upper amplitude limits. Numerical modeling reveals that polarization-induced spectra result from overlapping modes similar to the previously reported solid metal helixes. The further chiral spectrum comparisons confirm that the core–shell spirals exhibit a 25% bandwidth increase compared to solid platinum helixes of same sizes. Interestingly, the asymmetrically distributed platinum shell may further expand the operational band. Overall, comprehensive studies are performed on multi-material micro-helixes, which could provide additional flexibility to tailor their chiroptical properties, enabling the production of high-performance chiral microstructures for diverse applications.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202300298","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202300298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Helical microstructures exhibit unprecedented chiroptical responses particularly interesting for emerging applications such as broadband photonic components. To explore their chiral behaviors, the micro-helixes composed of polymer cores and platinum shells are proposed and realized via a two-step process combining two-photon polymerizations and sputter coating. Thanks to the core–shell multi-material configurations, the micro-helixes packed in a dense array generate an ideal chiral lineshape. Overspanning a wide range from 3 to 7 μm, the reflection-based g factors approach the upper amplitude limits. Numerical modeling reveals that polarization-induced spectra result from overlapping modes similar to the previously reported solid metal helixes. The further chiral spectrum comparisons confirm that the core–shell spirals exhibit a 25% bandwidth increase compared to solid platinum helixes of same sizes. Interestingly, the asymmetrically distributed platinum shell may further expand the operational band. Overall, comprehensive studies are performed on multi-material micro-helixes, which could provide additional flexibility to tailor their chiroptical properties, enabling the production of high-performance chiral microstructures for diverse applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
观察核壳微螺旋赋予的宽带宽和巨奇光异彩响应
螺旋状微结构表现出前所未有的自旋响应,特别适用于宽带光子元件等新兴应用领域。为了探索它们的手性行为,我们提出了由聚合物芯和铂壳组成的微螺旋,并通过双光子聚合和溅射涂层相结合的两步工艺实现了这种微螺旋。由于采用了核壳多材料配置,密集排列的微螺旋产生了理想的手性线形。在 3 到 7 μm 的大范围内,基于反射的 g 因子接近振幅上限。数值建模显示,偏振引起的光谱是由重叠模式产生的,与之前报道的固态金属螺旋相似。进一步的手性光谱比较证实,与相同尺寸的固态铂螺旋相比,核壳螺旋的带宽增加了 25%。有趣的是,不对称分布的铂壳可能会进一步扩大工作带。总之,我们对多材料微螺旋进行了全面的研究,这可以提供更多的灵活性来定制它们的光电特性,从而生产出高性能的手性微结构,用于各种不同的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
2.70%
发文量
0
期刊最新文献
Masthead Structural Colors Derived from the Combination of Core–Shell Particles with Cellulose Ultrafast Terahertz Superconductor Van der Waals Metamaterial Photonic Switch Masthead Progress on Coherent Perovskites Emitters: From Light-Emitting Diodes under High Current Density Operation to Laser Diodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1