{"title":"LW-PWECC: Cryptographic Framework of Attack Detection and Secure Data Transmission in IoT","authors":"J. Ranjith, K. Mahantesh, C. N. Abhilash","doi":"10.18196/jrc.v5i1.20514","DOIUrl":null,"url":null,"abstract":"In the present era, the number of Internet of Health Things (IoHT) devices and applications has drastically expanded. Security and attack are major issues in the IoHT domain because of the nature of its architecture and sorts of devices. Over the recent few years, network attacks have dramatically increased. Many detection and encryption techniques are existing however they lack accuracy, training stability, insecurity, delay etc. By the above concerns, this manuscript introduces a novel deep learning technique called Agnostic Spiking Binarized neural network with Improved Billiards optimization for accurate detection of network attacks and Light Weight integrated Puzzle War Elliptic Curve Cryptographic framework for secure data transmission with high security and minimal delay. Optimal features from the datasets are selected by volcano eruption optimization algorithm with better convergence for reducing the overall processing time. Wilcoxon Rank Sum and Mc Neymar’s tests are performed for proving the statistical analyses. The outcomes show that the introduced approach performs with an overall accuracy of 99.93% which is better than the previous techniques demonstrating the effectiveness.","PeriodicalId":443428,"journal":{"name":"Journal of Robotics and Control (JRC)","volume":"26 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Robotics and Control (JRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18196/jrc.v5i1.20514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the present era, the number of Internet of Health Things (IoHT) devices and applications has drastically expanded. Security and attack are major issues in the IoHT domain because of the nature of its architecture and sorts of devices. Over the recent few years, network attacks have dramatically increased. Many detection and encryption techniques are existing however they lack accuracy, training stability, insecurity, delay etc. By the above concerns, this manuscript introduces a novel deep learning technique called Agnostic Spiking Binarized neural network with Improved Billiards optimization for accurate detection of network attacks and Light Weight integrated Puzzle War Elliptic Curve Cryptographic framework for secure data transmission with high security and minimal delay. Optimal features from the datasets are selected by volcano eruption optimization algorithm with better convergence for reducing the overall processing time. Wilcoxon Rank Sum and Mc Neymar’s tests are performed for proving the statistical analyses. The outcomes show that the introduced approach performs with an overall accuracy of 99.93% which is better than the previous techniques demonstrating the effectiveness.