Implementation of Orange Data Mining to Predict Student Graduation on Time at Pringsewu Muhammadiyah University

Roby Novianto, Bambang Triraharjo, Baskoro
{"title":"Implementation of Orange Data Mining to Predict Student Graduation on Time at Pringsewu Muhammadiyah University","authors":"Roby Novianto, Bambang Triraharjo, Baskoro","doi":"10.36805/bit-cs.v5i1.6073","DOIUrl":null,"url":null,"abstract":"Thel prolcelss olf molnitolring and elvaluating thel graduatioln olf Muhammadiyah Pringselwu Univelrsity (UMPRI) studelnts relally nelelds tol bel dolnel belcausel thel studelnt graduatioln ratel is an ellelmelnt olf accrelditatioln asselssmelnt that is velry impolrtant folr elach Study Prolgram. Data Mining can bel useld tol classify studelnt graduatioln accuracy. This study aims tol apply thel olrangel data mining applicatioln using thel K-Nelarelst Nelighbolr (K-NN), Delcisioln Trelel and Naivel Bayels moldells and will theln elvaluatel thel accuracy olf elach olf thelsel moldells. This relselarch was colnducteld at Pringselwu Muhammadiyah Univelrsity in selvelral batchels, theln studelnt data will bel analyzeld using thel olrangel data mining applicatioln using thel K-NN, Delcisioln Trelel and Naivel Bayels moldells. Thel data telsting prolcelss appliels K-Folld Crolss Validatioln (K=5), whilel thel elvaluatioln moldell useld is thel Colnfusioln Matrix and ROlC. Thel relsults olf thel colmparisoln olf thel threlel moldells arel as folllolws, K-NN has an accuracy ratel olf 75.7%, Delcisioln Trelel has an accuracy ratel olf 78.1%, and Naivel Bayels has an accuracy ratel olf 77.8%. Thelrelfolrel, folr classifying thel graduatioln ratel olf Muhammadiyah Univelrsity studelnts, Pringselwu relcolmmelnds thel Delcisioln Trelel moldell belcausel it has a belttelr lelvell olf accuracy than K-NN and Naivel Bayels.","PeriodicalId":389042,"journal":{"name":"Buana Information Technology and Computer Sciences (BIT and CS)","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buana Information Technology and Computer Sciences (BIT and CS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36805/bit-cs.v5i1.6073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Thel prolcelss olf molnitolring and elvaluating thel graduatioln olf Muhammadiyah Pringselwu Univelrsity (UMPRI) studelnts relally nelelds tol bel dolnel belcausel thel studelnt graduatioln ratel is an ellelmelnt olf accrelditatioln asselssmelnt that is velry impolrtant folr elach Study Prolgram. Data Mining can bel useld tol classify studelnt graduatioln accuracy. This study aims tol apply thel olrangel data mining applicatioln using thel K-Nelarelst Nelighbolr (K-NN), Delcisioln Trelel and Naivel Bayels moldells and will theln elvaluatel thel accuracy olf elach olf thelsel moldells. This relselarch was colnducteld at Pringselwu Muhammadiyah Univelrsity in selvelral batchels, theln studelnt data will bel analyzeld using thel olrangel data mining applicatioln using thel K-NN, Delcisioln Trelel and Naivel Bayels moldells. Thel data telsting prolcelss appliels K-Folld Crolss Validatioln (K=5), whilel thel elvaluatioln moldell useld is thel Colnfusioln Matrix and ROlC. Thel relsults olf thel colmparisoln olf thel threlel moldells arel as folllolws, K-NN has an accuracy ratel olf 75.7%, Delcisioln Trelel has an accuracy ratel olf 78.1%, and Naivel Bayels has an accuracy ratel olf 77.8%. Thelrelfolrel, folr classifying thel graduatioln ratel olf Muhammadiyah Univelrsity studelnts, Pringselwu relcolmmelnds thel Delcisioln Trelel moldell belcausel it has a belttelr lelvell olf accuracy than K-NN and Naivel Bayels.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在 Pringsewu Muhammadiyah 大学实施橙色数据挖掘以预测学生按时毕业情况
穆罕默迪亚普林塞尔伍大学(UMPRI)学生毕业率的确定和评估是一项复杂的工作,对每项学习计划的实施都有很大的影响。数据挖掘可用于对学生毕业准确率进行分类。本研究旨在使用 K-Nelarelst Nelighbolr (K-NN)、Delcisioln Trelel 和 Naivel Bayels 模型应用数据挖掘,并将评估这些模型的准确性。该研究在普林塞卢穆罕默德尼亚大学分批进行,研究数据将使用K-NN、Delcisioln Trelel和Naivel Bayels模型,使用Olrangel数据挖掘应用程序进行分析。数据挖掘程序使用的是K-Folld Crolss Validatioln(K=5),而使用的评价模型是Colnfusioln Matrix和ROlC。三种方法的比较结果如下:K-NN 的准确率为 75.7%,Delcisioln Trelel 的准确率为 78.1%,Naivel Bayels 的准确率为 77.8%。在对穆罕默德大学学生的毕业率进行分类后,Pringselwu 发现 Delcisioln Trelel 模型的准确率低于 K-NN 和 Naivel Bayels。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Detection of Malacca Woven Fabric Motifs Using the YOLOv4 Method Detection of Diseases and Pests on The Leaves of Sweet Potato Plants sing Yolov4 Implementation of Orange Data Mining to Predict Student Graduation on Time at Pringsewu Muhammadiyah University Examining Healthcare Profesional’s Acceptance of Electronic Medical Records System using Extended UTAUT2 T Taking Into Account Imprecision in the Modeling Voter in a Multi-Agent Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1